Atom: Low-Bit Quantization for Efficient and Accurate LLM Serving

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, Baris Kasikci

> MLSys, 2024 Santa Clara, CA

Challenges for LLM Serving Large memory usage

Large Model weights

LLM size and accelerator memory

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

KV Cache size for Llama-65B

Challenges for LLM Serving Low compute utilization

Max Batch Size for Llama-65B (With 4xA100 80GB)

Seqlen	512	1024	2048	40
Max Batch	160	80	40	2

GPU Performance w/ Batch

Challenges for LLM Serving Low compute utilization

Background: What is Quantization?

- Map data to a lower resolution
- Reduce #bits to store each element

Background: What is Quantization?

- Map data to a lower resolution
- Reduce #bits to store each element

 $\overline{}$

 $\mathbf{x} = s \mathbf{x}_{int}$

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedup from reducing memory loading
- Dequantize weights to high-bit for computation

#Bit/Model	FP16	INT8	INT4	
Mistral-7B	16G	8G	4G	
Llama2-70B	140G	70G	35G	
GPT3.5-175B	330G	165G	83G	

LLM Sizes in different precision

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedup from reducing memory loading
- Dequantize weights to high-bit for computation

#Bit/Model	FP16	INT8	INT4	
Mistral-7B	16G	8G	4G	
Llama2-70B	140G	70G	35G	
GPT3.5-175B	330G	165G	83G	

LLM Sizes in different precision

Weight-Activation Quantization

- Use efficient low-bit arithmetic for computation
- Cont. increasing throughput when batch is larger
- Prior works can not maintain accuracy at 4bit

Roofline model with different precision 8

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedu
- Dequant

#Bit/N

Mistra

			ૹ૽ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ
Llama2-70B	140G	70G	35G
GPT3.5-175B	330G	165G	83G

LLM Sizes in different precision

Weight-Activation Quantization

- Use efficient low-bit arithmetic for computation
- Cont_increasing throughout when batch is larger

Roofline model with different precision 9

LLM Quantization Challenges: Outliers

- Few activation channels are consistently larger than others
- Outliers ruin quantization accuracy

10

LLM Quantization Challenges: Outliers

- Few activation channels are consistently larger than others
- Outliers ruin quantization accuracy

11

Reorder-Based Mixed Precision

- Keep outlier channels in INT8, quantize others to INT4
- Reorder outlier channels for regular memory accessing
- Hide activation reordering overhead in previous layer

Activations after Reordering

Reorder weights for accurate GEMM

Llama-7B WikiText2 Perplexity with Mixed-Precision

Llama-7B Perplexity with Mixed-Precision

Fine-grained Group Quantization Low accuracy \Box S^w W Х Χ S^x Per tensor

Llama-7B Perplexity with Fine-Grained Group Quant.

Overheads of Group Quantization

- Partial sum between groups can not be accumulated directly
- To accumulate: (1) dequantize partial sum to FP16 and (2) sum up in FP16
- We design a specialized GPU kernel to handle GEMM with group quant
- We fuse low-bit and high-bit GEMM in one kernel

Atom GEMM kernel design

KV Cache Quantization

 KV Cache: caching key and value data for self-attention layer to save computation KV Cache is relatively easy to quant: a simple 4-bit RTN can maintain accuracy Mixed-precision, reordering, group quantization can still be applied to KV Cache

Evaluation

Accuracy Evaluation Setup

- LLMs: Llama, Llama2, Mixtral-8x7B
- Baselines: SmoothQuant[1], OmniQuant[2], QLLM[3]
- Group size: 128
- Outliers: 128
- Calibration: 128 samples from WikiText2
- Perplexity eval: WikiText2, PTB, C4

[1] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023 [2] OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, ICLR 2024 [3] QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, ICLR 2024 [4] https://github.com/EleutherAl/Im-evaluation-harness

• Zero-shot accuracy eval: six common sense tasks from **Im-evaluation-harness**[4]

Zero-Shot Accuracy of LLaMA-65B

- At W4A4, Atom is able to maintain accuracy with only a 1.47% drop
- Atom's accuracy at W3A3 is even better than prior works at W4A4

I lomo	# Bit s	Mathad	Zero-shot Accuracy ↑							-
Liama #Dits	Method	PIQA	ARC-e	ARC-c	BoolQ	HellaSwag	Winogrande	Avg.	_	
	FP16	-	80.79	58.71	46.24	82.29	80.72	77.50	71.04	Ba
65B W4A4		SmoothQuant	60.72	38.80	30.29	57.61	36.81	53.43	46.28	-24
		OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22	-11
	QLLM	73.56	52.06	39.68	-	70.94	62.90	59.83	11	
		Atom	80.41	58.12	45.22	82.02	79.10	72.53	69.57	-1.
W3A3	W2 A 2	SmoothQuant	49.56	26.64	29.10	42.97	26.05	51.14	37.58	
	Atom	75.84	51.43	41.30	74.07	72.22	64.33	63.20		

accuracy with only a **1.47%** drop etter than prior works at W4A4

Zero-Shot Accuracy of LLaMA-65B

- At W4A4, Atom is able to maintain accuracy with only a 1.47% drop
- Atom's accuracy at W3A3 is even better than prior works at W4A4

Llomo #Dita		Method	Zero-shot Accuracy ↑							-
Liama #Dits	PIQA		ARC-e	ARC-c	BoolQ	HellaSwag	Winogrande	Avg.	_	
FP	FP16	_	80.79	58.71	46.24	82.29	80.72	77.50	71.04	Ba
65B W4A4 W3A3		SmoothQuant	60.72	38.80	30.29	57.61	36.81	53.43	46.28	-24
		OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22	-11
	W4A4	QLLM	73.56	52.06	39.68	-	70.94	62.90	59.83	-11
	Atom	80.41	58.12	45.22	82.02	79.10	72.53	69.57	-1.	
	W2A2	SmoothQuant	49.56	26.64	29.10	42.97	26.05	51.14	37.58	-
	W SAS	Atom	75.84	51.43	41.30	74.07	72.22	64.33	63.20	-7

accuracy with only a **1.47%** drop etter than prior works at W4A4

Perplexity of Llama2 & Mixtral on WikiText2

- Atom is able to main accuracy across models (Llama2, Mixtral) Atom can be used with FP4 quantization

Efficiency Evaluation Setup

- Kernel: W4A4-G128_W8A8-O128
- Benchmark: Llama-7B
- Baseline: FP16, W4A16 (AWQ[1]), W8A8 (SmoothQuant[2])
- Workload: ShareGPT[3]
- Evaluate on RTX 4090 24GB
- Integrate into Punica[4] for end-to-end performance evaluation

[1] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, MLSys 2024 [2] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

[3] ShareGPT, https://sharegpt.com/

[4] Punica: Multi-Tenant LoRA Serving, MLSys 2024

[5] FlashInfer, https://github.com/flashinfer-ai/flashinfer

Use FlashInfer[5] as self-attention kernel and add 4-bit kernel support

GEMM Throughput & Self-Attention Latency

• For GEMM when B=256, Atom is **3.4x** and **1.9x** better than FP16 and W8A8

For Self-attn when B=128, Atom is 3.5x and 1.8x faster than FP16 and W8A8

End-to-End Throughput & Latency

- Why gains are more than 4x for FP16 and 2x for W8A8? Ans: Atom is able to run at a larger batch size

Atom can boost throughput for up to 7.7x while maintaining a low latency

- for LLMs
- quantization and (3) specialized GPU kernel
- accuracy at W4A4

Conclusions

Atom is an accurate and efficient low-bit weight-activation quantization

• Atom uses (1) reorder-based mixed-precision, (2) fine-grained group

• Atom can boost end-to-end throughput for up to 7.7x while maintaining

Atom: Low-Bit Quantization for Efficient and Accurate LLM Serving

Thank you!

