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Challenges for LLM Serving
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SmoothQuant: Accurate and Efficient Post-Training Quan9za9on for Large Language Models, ICML 2023
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Challenges for LLM Serving

Seqlen 512 1024 2048 4096

Max Batch 160 80 40 20

Max Batch Size for Llama-65B 
(With 4xA100 80GB)

GPU Performance w/ Batch

Low compute utilization
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Challenges for LLM Serving

Seqlen 512 1024 2048 4096

Max Batch 160 80 40 20

Max Batch Size for Llama-65B 
(With 4xA100 80GB)

GPU Performance w/ Batch

Low compute utilization

Compression is the key  
for efficient LLM serving
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Background: What is Quantization?
• Map data to a lower resolution

• Reduce #bits to store each element

}SData in FPQuantization levels
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Background: What is Quantization?
• Map data to a lower resolution
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Quantization Type

• Mainstream methods (AWQ, QMoE, GPTQ, 
SqueezeLLM, QUIP…)


• Speedup from reducing memory loading

• Dequantize weights to high-bit for computation

Weight-only Quantization

#Bit/Model FP16 INT8 INT4

Mistral-7B 16G 8G 4G

Llama2-70B 140G 70G 35G

GPT3.5-175B 330G 165G 83G

LLM Sizes in different precision
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Quantization Type

• Mainstream methods (AWQ, QMoE, GPTQ, 
SqueezeLLM, QUIP…)
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Mistral-7B 16G 8G 4G

Llama2-70B 140G 70G 35G

GPT3.5-175B 330G 165G 83G

LLM Sizes in different precision

• Use efficient low-bit arithmetic for computation

• Cont. increasing throughput when batch is larger

• Prior works can not maintain accuracy at 4-

bit

Weight-Activation Quantization

Roofline model with different precision
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Quantization Type

• Mainstream methods (AWQ, QMoE, GPTQ, 
SqueezeLLM, QUIP…)


• Speedup from reducing memory loading

• Dequantize weights to high-bit for computation

Weight-only Quantization

#Bit/Model FP16 INT8 INT4

Mistral-7B 16G 8G 4G

Llama2-70B 140G 70G 35G

GPT3.5-175B 330G 165G 83G

LLM Sizes in different precision

• Use efficient low-bit arithmetic for computation

• Cont. increasing throughput when batch is larger

• Prior works can not maintain accuracy at 4-

bit

Weight-Activation Quantization

Roofline model with different precision

Atom 
Maintaining LLM accuracy at W4A4 with a 

quanKzaKon-system co-design
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Activations sampled from Llama-7B

LLM Quantization Challenges: Outliers

• Few activation channels are consistently larger than others

• Outliers ruin quantization accuracy

Data in FPQuantization levels
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Activations from Llama-7B

LLM Quantization Challenges: Outliers

• Few activation channels are consistently larger than others

• Outliers ruin quantization accuracy

Data in FPQuantization levels Outlier

Large errors Quantization levels are wasted
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Reorder-Based Mixed Precision
• Keep outlier channels in INT8, quantize others to INT4

• Reorder outlier channels for regular memory accessing

• Hide activation reordering overhead in previous layer

Reorder weights for accurate GEMM
Activations after Reordering

INT4

INT8
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Llama-7B WikiText2 Perplexity with Mixed-Precision

11.4

2315
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Llama-7B Perplexity with Mixed-Precision

FP16: 5.68

11.4

2315
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Fine-grained Group Quantization
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Fine-grained Group Quantization

x

W

X
Sx

Sw

W

X xSxc

Swc

Per tensor Per token

Medium accuracyLow accuracy



17
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Fine-grained Group Quantization
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Llama-7B Perplexity with Fine-Grained Group Quant.

FP16: 5.68

11.4

2315

6.22



20

Overheads of Group Quantization
• Partial sum between groups can not be accumulated directly

• To accumulate: (1) dequantize partial sum to FP16 and (2) sum up in FP16

• We design a specialized GPU kernel to handle GEMM with group quant

• We fuse low-bit and high-bit GEMM in one kernel

Atom GEMM kernel design
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KV Cache Quantization 
• KV Cache: caching key and value data for self-attention layer to save computation

• KV Cache is relatively easy to quant: a simple 4-bit RTN can maintain accuracy

• Mixed-precision, reordering, group quantization can still be applied to KV Cache

V data from Llama-7B



Evaluation
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Accuracy Evaluation Setup
• LLMs: Llama, Llama2, Mixtral-8x7B

• Baselines: SmoothQuant[1], OmniQuant[2], QLLM[3]

• Group size: 128

• Outliers: 128

• Calibration: 128 samples from WikiText2

• Perplexity eval: WikiText2, PTB, C4

• Zero-shot accuracy eval: six common sense tasks from lm-evaluation-harness[4]

[1] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

[2] OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, ICLR 2024

[3] QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, ICLR 2024

[4] https://github.com/EleutherAI/lm-evaluation-harness
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Zero-Shot Accuracy of LLaMA-65B

-1.47%
-11.21%
-11.82%
-24.76%

Baseline

• At W4A4, Atom is able to maintain accuracy with only a 1.47% drop 

• Atom’s accuracy at W3A3 is even better than prior works at W4A4
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Zero-Shot Accuracy of LLaMA-65B

Baseline

-7.84%

-1.47%
-11.21%
-11.82%
-24.76%

• At W4A4, Atom is able to maintain accuracy with only a 1.47% drop 

• Atom’s accuracy at W3A3 is even better than prior works at W4A4
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Perplexity of Llama2 & Mixtral on WikiText2
• Atom is able to main accuracy across models (Llama2, Mixtral)

• Atom can be used with FP4 quantization

P
er
pl
ex
ity

0

2

4

6

8

10

Llama2-7B Llama2-13B Llama2-70B Mixtral-8x7B

FP16 SmoothQ OmniQ Atom(INT4) Atom(FP4)

>

0.67
0.47

0.46
0.66

83 3614.6 12.3



27

Efficiency Evaluation Setup
• Kernel: W4A4-G128_W8A8-O128

• Benchmark: Llama-7B

• Baseline: FP16, W4A16 (AWQ[1]), W8A8 (SmoothQuant[2])

• Workload: ShareGPT[3]

• Evaluate on RTX 4090 24GB

• Integrate into Punica[4] for end-to-end performance evaluation

• Use FlashInfer[5] as self-attention kernel and add 4-bit kernel support

[1] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, MLSys 2024 

[2] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

[3] ShareGPT, https://sharegpt.com/

[4] Punica: Multi-Tenant LoRA Serving, MLSys 2024

[5] FlashInfer, https://github.com/flashinfer-ai/flashinfer
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GEMM Throughput & Self-Attention Latency

Shape: Bsz x 4096 x 4096

GEMM Self-attention

Sequence length: 1024

3.4x1.9x

1.8x

3.5x

• For GEMM when B=256, Atom is 3.4x and 1.9x better than FP16 and W8A8

• For Self-attn when B=128, Atom is 3.5x and 1.8x faster than FP16 and W8A8

256
128



29

End-to-End Throughput & Latency
• Atom can boost throughput for up to 7.7x while maintaining a low latency

• Why gains are more than 4x for FP16 and 2x for W8A8? 

Ans: Atom is able to run at a larger batch size

B=64

B=32

B=16B=8
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Conclusions
• Atom is an accurate and efficient low-bit weight-activation quantization 

for LLMs


• Atom uses (1) reorder-based mixed-precision, (2) fine-grained group 
quantization and (3) specialized GPU kernel


• Atom can boost end-to-end throughput for up to 7.7x while maintaining 
accuracy at W4A4



Thank you!

Atom: Low-Bit Quantization for 
Efficient and Accurate LLM Serving


