Fine-Tuning Language Models Using Formal Methods
Feedback: A Use Case in Autonomous Systems

Yunhao Yang*, Neel P. Bhatt*, Tyler Ingebrand*, William Ward, Steven Carr,
Zhangyang Wang, and Ufuk Topcu

May 14th, 2024
CENTER FOR
3%,
& IEW)(AS autonomy.oden.utexas.edu aUTonOmy

Reinforcement Learning via Human Feedback (RLHF)

Example: OpenAl Scheme for Instruct GPT

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

I
\

)

Z

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain gravity...

Moon is natural

(.

Explain the moon
landing to a 6 year old

0 o

Explain war...

[C] o

satellite of the moon...

People went to

J

y

o)

0-0-0:-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Fine-Tuning Language Models Using Human Feedback

/ \ Trained LM Human / \
(Production) MOdil . scores : g
Text data L behstate ewar
= o text data gen:jerated =
> s ata &Y
. (%)
N 4 \ 4

N RESPONSE OPINION
wde
2 .
IDEA —4/ \"L [@
>/ SURVEY

FEEDBACK
%5\ /4
BRVIE ﬁr‘. OMMENT

* O’
2
RESULT RATING

Labor-Intensive Subjective/lnconsistent Feedback

Fine-Tuning Language Models Using ~ormal Feedback?

Methocds
d N\ Trained LM Y
(Production) Model
Text data generated Raware

e =" text data ,

= 4 - L 2

= @
N 4 \ 4 o 4

Formal Methods:
Automaton-Based Representation, Model Checking, Temporal Logic Specification, etc.

Y &—
o2 ’o °
% RESPONSE OPINION

IDEA -4’ \/—L ‘.1
> N s
FEE DBACK/4

». COMMENT

*

N
N W
R \\
\ .\)

o~ *

(Z)
A i FL
Anidp

RESULT RATING

Labor-Intensi Subjective/lInconsistent Feedba

Background: Automaton-Based Representations

Why automaton-based representations? They are used for

* model checking, planning,...

* reactive synthesis, games on graphs, ...

* probabilistic verification and synthesis, and
* reinforcement learning.

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?

Model,

environment assumptions,
other side information controller system requirements
@ traffic 1 7
light 2

trafﬂc
hght1

]]
(o) (o1 Amp 00g,AT0 g,
o Qo ® ,Bﬂ /\D(_'glv_'.gZ)
i ® «2 E

@ @ “Each light will always
{91} {92} 3l |8 eventually be green, and

the lights will never
simultaneously be green.”

traffic traffic C3
light 1 light 2 0

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?

Model,
environment assumptions,
other side information Controller ~ System requirements

‘M Q C hg”

Allowable
Individual sequences of
system trace logical formulas
Start Q C C ! ! g
Logic-based

system description

All possible system
executions

MRCEDP & forevery :

A (Very) Brief Introduction to Model Checking

Are the controller's outcomes guaranteed to satisfy user-specified
requirements when implemented against a system model?

Model,
environment assumptions,
other side information Controller ~ System requirements

\“M@C = cI>”}

|

Binary outcome

\4 v

v X

Byproduct: Counterexample trace g«

that violates the specification. _’O"O"O"

Fine-Tuning Language Models Using Formal Methods Feedback

Abstract Model High-Fidelity Simulator

User

Specifications Control Tasks
Autonomous System Models l l
A
(> Response 2) a é
Automated Feedback Prompt Dataset
Feed
To Select
DPO A

v Response 2 Prompt
v
Fine-Tune the ' A
Language Model
> e 4

Direct Preference Optimization Language Model Prompt

Query the
Language Model
<

Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

a:g: Controller Construction
vy

Response 1 Response 2

Autonomous System

| | |

(left car V right ped, €)

True, check left car
check

(
A check right ped)

F turn_right
G — stop

("LL 2A198q0
‘aniy)

Controller €, Controller &, A Set of Specifications
{D,...,D,}

Compare the # of
Satisfied Specifications (Response1 > Response 2)

1, 95, B4 1. 36> W

Model Checker Formal Verification

10

Fine-Tuning Language Models Using Formal Methods Feedback

Modeling the Autonomous System

aiﬂi

Autonomous System

right ped

Autonomous System Model /#

11

Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

Transitions Labels

States \ /
\ label of p; : g € P

labelof pp : p€ P

12

Formal Methods Feedback in an Autonomous Driving System

Modeling the Autonomous System

Qm = {Po 1}

) | Ay (pg) = greenlight
P = {greenlight} Ay (py) = — green light
S ~ Traffic Light Sy (po,p1) =1

M\Po,P1) =
Su(P1,po) =1

— green light

—_— ® ®

green light

13

Fine-Tuning Language Models Using Formal Methods Feedback

Controller Construction

Response 1 Response 2
(left car V right ped, €)
(True, check left car
A check right ped)
o 7y
right ped z oY
2 5 7 Xﬁ
NARY 7
E 2, Q
start = %

Controller €, Controller €,
Autonomous System Model /#

14

Formal Methods Feedback in an Autonomous Driving System

Controller Construction

Steps for turning right at

the traffic light

User

Language Model

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.
3. As you approach the intersection, look to your left for

oncoming traffic.

4. If there is no traffic coming from your left, check
pedestrians on your right.

5. If it is safe, turn your vehicle right.

1. Observe the traffic light in front of you.

2. Check for the left approaching car and right side pedestrian.
3. If no car from the left is approaching and no pedestrian on the
right, proceed to turn right.

15

Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.

3. As you approach the intersection, look to your left for oncoming traffic.
4. If there is no traffic coming from your left, check pedestrians on your right.
5. If it is safe, turn your vehicle right.

Grammar Transition Rule
A
1. <Qbse VP D] |
2. <if> ———— craight>.
3. <obse VP VP O
. <i1f> if vPC, vpA 2 '
4 1f AL RIS () Smm—yy destrian
at if VPC, VP4,. if - VPC, VP4,
5. <1f> it VPOVP4, else VP4, O (D (® 1rn
rlglf VP 1 if VPC else VPAz
VP4+— wait VPC VP4
VPA«— VP4 after VPC V9 :. (VPC, VP
VPA«— VP4 until VP® (vee ’VPA):‘ (VP o)
(— TL is green, €) (car from left, €)

-(®)
(y3u wm

‘S e pod)

’ (ped at right,

16

Formal Methods Feedback in an Autonomous Driving System

Controller Construction

1. Look straight ahead and watch for traffic light.
2. If the traffic light turns green, start moving forward.
3. As you approach the intersection, look to your left for

(car from left, €)

oncoming traffic.

4. If there is no traffic coming from your left, check
pedestrians on your right.

5. If it is safe, turn your vehicle right.

(left car V ped at right, €)

(True, check left car

A check ped at right)
@ g @ 1. Observe the traffic light in front of you.

Ae 2. Check for the left approaching car and right
§ g side pedestrian.
=N 3. If no car from the left is approaching and no
< pedestrian on the right, proceed to turn right.

17

Fine-Tuning Language Models Using Formal Methods Feedback

(left car V right ped, €)

(True, check left car

A check right ped)
Q1 >
e
N

F turn_right
G — stop

Controller €, Controller &, A Set of Specifications
{D,...,D,}

Model Checker Formal Verification

18

Formal Methods Feedback in an Autonomous Driving System

Formal Verification

(— TL is green, €) (car from Jeft, €)

‘e pad)

(y3u wm

TL is - green

TL is green
(ped at rigit,

[1(—green traffic light — —go straight),

[I(stop sign — < stop),
[J —turn right V —(car from leftV pedestrian at right), x

19

Formal Methods Feedback in an Autonomous Driving System

Formal Verification

(left car V ped at right, €)

(True, check left car

A check ped at right)
q1 >

Y

>

(1L 2AI3sqO
aniy)

TL is - green

right ped ®

TL is green

K2
g\/
start =>(G0 %

[1(—green traffic light — —go straight),
[(stop sign — ¢ stop),

(1 —turn right V —(car from left \V pedestrian at right),

20

Fine-Tuning Language Models Using Formal Methods Feedback

Compare the # of
Satisfied Specifications (Response1 < Response 2)

>

: &, D5, K O, P2, Y4

21

Fine-Tuning Language Models Using Formal Methods Feedback

Abstract Model High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
A
(= < () OB
Automated Feedback Prompt Dataset
Feed T
To Select
DPO A
v Response 2 Prompt
v
Fine-Tune the @ Query the A
Language Model N Language Model
> <
Direct Preference Optimization Language Model Prompt

22

Fine-Tuning Language Models Using Formal Methods Feedback

High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
A
(<) [B
Automated Feedback Prompt Dataset

Feed T
To Select

DPO A
v Response 2 Prompt
v
Fine-Tune the A
Language Model> N

Direct Preference Optimization Language Model Prompt

Query the
Language Model
<

23

Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

Information from the Simulator

Response 1 Response 2

| |

(left car V right ped, €)
(True, check left car

. A check right ped)
@ e
o

start =>»

Execution Trace

A stop, —pedestrian A go_straight)

Controller € Controller &, (left_car A go_straight, pedestrip

|

> Execution Traces

Empirically Collect
Execution Info

> Execution Traces

High-Fidelity Simulator

24

Fine-Tuning Language Models Using Formal Methods Feedback

Empirical Evaluation via Simulation

(Response1 < Response 2)

P[satisfy all specs]

> Execution Traces > W F turn_right > 60%
Empirically Collect _ G — stop
Execution Info Verify Traces
> Execution Traces > » 90%
A Set of Specifications

{®,..., D, }
25

Quantitative Analysis

Empirical Evaluation via Simulation

Carla Simulator: Extract execution traces.

Carla Simulation Video

Vector3D(x=7.464157, y=- 339211,
Vector3D(x=7.464157, y=-23.339211,
Vector3D(x=7.627457, y=- .336159,
Vector3D(x=7.699051, - .277988,

JectorBD(x:-12.249878l y=-28.675850,

Vector3D(x=-12.471230, y=-8.660095,
Vector3D(x=-12.468399, y=-8.708710,
Vector3D(x=-7.435089, y=-44.920258,
Vector3D(x=2.802956, y=-17.326714,

flVector3D(x=7.518684,
Vector3D(x=7.518684,
Vector3D(x=7.681984, y=
Vector3D(x=7.753578, \
Vector3D(x=-12.210609,
Vector3D(x=-12.270897,
Vector3D(x=-12.195351,
Vector3D(x=-12.416702, -8.
Vector3D(x=-12.413872, -8.331429,
Vector3D(x=-7.385361, y=-44.102268,
Vector3D(x=2.859573, vy 7.434631,

.961929,
.961929,
.958878,
.900707,

NN

NN

282814,

T T)
(LI | N | N | B | B~ ~N N N]

n
S S

BlVector3D(x=-7.644753, y=-20.938622, z=-

Execution Trace: (desired objects with positions, action),......

Desired objects: pedestrian, car, red/green traffic light, stop sign,......
Actions: go straight, turn left, stop, turn right,......

Y4
z
z

899784) Class: TL
232456) Class: TL
.806130) Class: TL
9
2

85428) Class: TL

or
or
or
or

Object and Position Information

TS
TS
TS
TS

.482181) Class: TL or TS
.196321) Class: TL or TS
-1.387742) Class: TL or TS

0.036881) Vehicle,

z=0.022928) Vehicle, I
Vector3D(x=-7.692642, y=-21.904179, z=-0.002782) Vehicle,

z
z
z
z

-48.282810,
-48.344036,
-28.298569,

z

z
z
z

p
P
2
1
r4
z
z
0

900478) Class: TL
233150) Class: TL
806824) Class: TL
986122) Class: TL

2
1
-
2

ID:
D:

9

89

ID:

or
or
or
or

TS
TS
TS
TS

1

87

=2.822465) Class: TL or TS
=1.984991) Class: TL or TS
=2.482875) Class: TL or TS
3.197015) Class: TL or TS

-1.387048) Class: TL or TS

0.036914) Vehicle,

.002182) Vehicle,

.023687) Vehicle, ID:
0 ID:

ID:

9

89

|

87

Quantitative Analysis

Empirical Evaluation via Simulation

Formal Verification Empirical Evaluation
— 1.2
§ —T H ! # before fine-tuning
-:g:g: :é 1 -| " " after fine-tuning
= b~
3 S g
5 2 O
8=

3 2
G e 0.6 -
ks S
& & 0.4 -
© s Y
= =
2 o
E B Btrain S 0.2+
Z I8 validation

T T T T T T T T T T T 0 -

0 20 40 60 80 100 120 140 160 180 200 P, P, D P, @5

Epoch Specification

The results indicate that our approach can improve the language model’s ability to satisfy
critical requirements.

Our approach can act as a starting point to guide the design process for real-world
implementations of autonomous driving systems.

27

Next Step: Verifiable Grounding

Ground the controller to real autonomous driving robots

class AutonomousVehicle():

gert

(self):
.pedestrian =
. Car =

forward(self):

vehicle starts moving forward

. ':ffwht‘t(self):

vehicle turns left

f turn_right(self):

vehicle turns right

f stop(self):

vehicle slows down and stops
pass

[(—green traffic light — —go straight), J
[I(stop sign — < stop),

(left car V ped at right, €)

f CrossRoad(vehicle):

vehicle.observe() # observe the environment first

if vehicle. o ; (): # Step 1
vehicle.: () # stop if pedestrian is observed
return "Stop"

elif vehicle.ca ved(): # Step 2

vehicle.stop() # stop if car is observc4
return "Stop"
else: # Step 3
vehicle.move forward()
return "Move_forward"

[J —turn right VV —(car from left V pedestrian at right), /

28

Q&A

Abstract Model High-Fidelity Simulator

User
Specifications | Control Tasks
Autonomous System Models l l
A
(> Response 2)< a E
Automated Feedback Prompt Dataset
Feed I T
To Select
DPO A
v Response 2 Prompt
v
Query the A

Fine-Tune the
Language Model
S . -»>

Direct Preference Optimization Language Model Prompt

Language Model
<

