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• Problem: Weights redundancy in mixed precision training

• Memory capacity pressure 

• Proposal: Just-in-time quantization (JIT-Q) with PIM

• Memory capacity savings of up to 24% → Larger models, larger batch-sizes, lower model parallelism, etc. 

Executive Summary
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Processing-in-Memory (PIM)
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Opportunity for Capacity Savings

• Weights maintained in both high and low precision during training 

• Multiple low precision copies with directional numeric formats
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Opportunity for Capacity Savings → JIT-Q with PIM

• Avoid storing low precision weights via just-in-time quantization (JIT-Q) with PIM

• Overlap quantization on PIM with preceding GPU operation

• Advantage: Capacity savings

• Train larger models, enable larger batch-size, reduce model parallelism, etc. 
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• PIM ALU augmentations to realize quantization

• Support for lane-specific shifts and conditional 

execution (e.g., with mask)

Deduce shared exponents (e.g., max)
Augmentation: Masked compare

1

2
Adjust mantissa bits (e.g., conditional shift)
Augmentation: Intra-lane conditional shift

PIM Compute

• Tiled data-mapping to support row and column 

quantization

• Avoid inter-bank compute → Map tile of input weight 

tensor to a single bank

• Avoid cross-SIMD compute → Map each element of 

a given tile to the same SIMD lane
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Is there slack for PIM to 

quantize the weights JIT?

What is the effect of JIT-Q 

on training throughput? 

What are the capacity 

savings of JIT-Q with PIM?

Key Evaluation Questions 
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Modeling JIT-Q Slack 

• 𝑺𝒍𝒂𝒄𝒌 = Computation in transformer block – PIM quantization for weights of next transformer block

• GPU performance model = max (compute time, memory time)

• Compute time = GEMM ops at peak compute throughput

• Memory time = Time to read quantized GEMM inputs at peak memory bandwidth

• PIM performance model = Detailed DRAM commands to realize quantization

• Model next transformer block quantization for simplicity

PIM quantization slack
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[1] We model computations that are representative of BERT, Megatron-LM, GPT3, PaLM, etc.



9 |

Quantization with PIM exhibits sufficient slack to be just-in-time

• Both forward and backpropagation have enough slack for PIM to complete quantization

• Column quantization has lower slack vs. row quantization due to additional DRAM row opens

• Pushing precision lowers PIM slack BUT enough slack still available for PIM JIT-Q
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Modeling Throughput Effect      and Capacity Savings

• Throughput: JIT-Q necessitates concurrent GPU/PIM execution

• GPU compute units to orchestrate PIM computation cause GEMM slowdown

• Offloading PIM orchestration away from GPU can prevent this slowdown

• Assess training throughput loss1 via GEMM slowdown measured natively

• Capacity: FP8 mixed precision training setup2
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[1] https://arxiv.org/abs/2302.02825

[2] https://arxiv.org/abs/1905.12334  

[3] https://arxiv.org/abs/2205.05198 

https://arxiv.org/abs/2302.02825
https://arxiv.org/abs/1905.12334
https://arxiv.org/abs/2205.05198
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PIM JIT-Q → Capacity savings at small training throughput loss

• MX6 → Capacity savings = 12.5% , Throughput loss = 1.6%

• Harnessing capacity savings – Example LLM GPT3-175B

• Train 20% larger model or 12.5% lower tensor-slicing degree

• Capacity savings/throughput effects dependent on target MX format
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Conclusion

• JIT-Q – PIM is interesting for ML

• Quantize weight tensors JIT with PIM → Avoid storing low-precision weight tensors in memory

• JIT-Q with PIM has sufficient slack vis-à-vis GPU compute

• PIM JIT-Q delivers capacity savings at marginal throughput loss

HP : High precision     

LP : Low precision     

W   : Weights       

𝑸:  : QuantizationQ
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