
JIT-Q: Just-in-time

Quantization with

Processing-in-Memory for

Efficient ML Training
Mohamed Assem Ibrahim, Shaizeen Aga, Ada Li,

Suchita Pati, and Mahzabeen Islam

MLSys 2024

2 |

• Problem: Weights redundancy in mixed precision training

• Memory capacity pressure

• Proposal: Just-in-time quantization (JIT-Q) with PIM

• Memory capacity savings of up to 24% → Larger models, larger batch-sizes, lower model parallelism, etc.

Executive Summary

HP : High precision

LP : Low precision

W : Weights

𝑸: : QuantizationQ

Near-core JIT-QMixed precision training

Capacity

MX training JIT-Q with PIM

Data movement

WLPWHP

WLP

WLP-rowWHP

WLP-col

WLP−X

Q

WHP

WHP

WHP

WLP

Q

Processor

Memory

× × ✓ ✓

✓ ✓ × ✓

3 |

Processing-in-Memory (PIM)

Interposer

GPU Base die

DRAM die

DRAM die

DRAM die

DRAM die

HBM Pseudo-channel

Bank

PIM

Bank

Register

file

PIMBank

PIM

Bank

…

Bandwidth

To GPU

In memory-die

4×

Caches/scratchpadCore

ALU

SIMD lane

P
IM

 k
e

rn
e

l

⇜⇜
⇜⇜
⇜⇜

B
ro

a
d

c
a

s
t

Harness higher memory bandwidth1

2 Save data movement energy

No inter-bank communication1

2 No cross-SIMD compute

3 Interference between concurrent PIM

and GPU execution

4 |

Opportunity for Capacity Savings

• Weights maintained in both high and low precision during training

• Multiple low precision copies with directional numeric formats

vector-op GEMM

WHP

GPU Q

WLP

vector-op GEMM

OLP
….Memory

Mixed precision training (FP32/BF16)

WHP

GPU Qcol

WLP-colMemory

Qrow

WLP-row

vector-op Qrow Qcol

OLP-row OLP-col

GEMM

Training with MX quantization

vector-op GEMM

Tensor in memory GPU Compute

Legend:

HP: High precision LP: Low precision W: Weights O: Output Q: Quantization

5 |

Opportunity for Capacity Savings → JIT-Q with PIM

• Avoid storing low precision weights via just-in-time quantization (JIT-Q) with PIM

• Overlap quantization on PIM with preceding GPU operation

• Advantage: Capacity savings

• Train larger models, enable larger batch-size, reduce model parallelism, etc.

WHP

GPU

Temp

PIM
+

Memory

vector-op Qrow Qrow

OLP-col OLP-col

GEMM

Training with JIT-Q on PIM

Qrow

Tensor in memory GPU Compute

Legend:

Temporary tensor

in memory
PIM Compute

vector-op GEMM

WLP-row

HP: High precision LP: Low precision W: Weights O: Output Q: Quantization

6 |

• PIM ALU augmentations to realize quantization

• Support for lane-specific shifts and conditional

execution (e.g., with mask)

Deduce shared exponents (e.g., max)
Augmentation: Masked compare

1

2
Adjust mantissa bits (e.g., conditional shift)
Augmentation: Intra-lane conditional shift

PIM Compute

• Tiled data-mapping to support row and column

quantization

• Avoid inter-bank compute → Map tile of input weight

tensor to a single bank

• Avoid cross-SIMD compute → Map each element of

a given tile to the same SIMD lane

Data-mapping

Weight tensor

0 1 2

3 4 5

p q r

…

16

16

Pseudo-channel

Bank Bank

…

PIM PIM

0 3 p 2 5 r

PIM Quantization Kernel Considerations

Quantize

BF16 format

1b 8b 7b

16×

8b 1b 4b1b 4b1b

MX6 format 8×

1 2

7 |

Is there slack for PIM to

quantize the weights JIT?

What is the effect of JIT-Q

on training throughput?

What are the capacity

savings of JIT-Q with PIM?

Key Evaluation Questions

8 |

Modeling JIT-Q Slack

• 𝑺𝒍𝒂𝒄𝒌 = Computation in transformer block – PIM quantization for weights of next transformer block

• GPU performance model = max (compute time, memory time)

• Compute time = GEMM ops at peak compute throughput

• Memory time = Time to read quantized GEMM inputs at peak memory bandwidth

• PIM performance model = Detailed DRAM commands to realize quantization

• Model next transformer block quantization for simplicity

PIM quantization slack

Quantization

slack of block n+1

Fused GEMM-vector Fused GEMM-vector…

GPU: Run GEMMs of transformer block n

Quantize

weights 𝑤𝐼𝑃

…

PIM: Quantize weights of next transformer block n+1

Quantize

weights 𝑤𝐹𝐹2

Block n+1

𝑤𝐼𝑃 𝑤𝐹𝐹2…

Large language model (LLM)1

Transformer

block 0

Transformer

block 1

Transformer

block 𝐿 − 1
…

Fused GEMM-vector Fused GEMM-vector…

[1] We model computations that are representative of BERT, Megatron-LM, GPT3, PaLM, etc.

9 |

Quantization with PIM exhibits sufficient slack to be just-in-time

• Both forward and backpropagation have enough slack for PIM to complete quantization

• Column quantization has lower slack vs. row quantization due to additional DRAM row opens

• Pushing precision lowers PIM slack BUT enough slack still available for PIM JIT-Q

0

0.1

0.2

0.3

0.4

0.5

b
e
rt

-3
4

5
M

g
p
t-

2
-1

.5
B

m
e

g
a
-l

m
-8

.3
B

t-
n

lg
-1

7
B

g
p
t-

3
-1

7
5
B

m
e

g
a
-n

lg
-5

3
0

B

p
a
lm

-5
4
0

B

fu
tu

re
-1

T

fu
tu

re
-1

0
T

fu
tu

re
-1

0
0

T

b
e
rt

-3
4

5
M

g
p
t-

2
-1

.5
B

m
e

g
a
-l

m
-8

.3
B

t-
n

lg
-1

7
B

g
p
t-

3
-1

7
5
B

m
e

g
a
-n

lg
-5

3
0

B

p
a
lm

-5
4
0

B

fu
tu

re
-1

T

fu
tu

re
-1

0
T

fu
tu

re
-1

0
0

T

forward backward

P
IM

 q
u

a
n

ti
z
a

ti
o

n
 t
im

e
 /

G
P

U
 c

o
m

p
u

ta
ti
o

n
 t
im

e

rowQ colQ

L
o

w
e

r
=

 H
ig

h
e

r
s
la

c
k

(b
e
tt
e
r

a
s
 P

IM
 q

u
a
n
ti
z
a
ti
o
n

fi
n
is

h
e
s
 f
a
s
te

r)

BF16 to MX6

10 |

Modeling Throughput Effect and Capacity Savings

• Throughput: JIT-Q necessitates concurrent GPU/PIM execution

• GPU compute units to orchestrate PIM computation cause GEMM slowdown

• Offloading PIM orchestration away from GPU can prevent this slowdown

• Assess training throughput loss1 via GEMM slowdown measured natively

• Capacity: FP8 mixed precision training setup2

LLM + Baseline

LLM + PIM JIT-Q

Training

throughput loss

Natively measured

GEMM slowdown

GEMM Communication …

GPU

CU

GEMM

Baseline

GPU

PIM JIT-Q

GEMM Q

CU

GEMM Communication …

LLM training throughput loss Memory map

WHP

Optimizer

State

BF16

WLP-row

WLP-col

Activations3

Rest

MXn FP8

[1] https://arxiv.org/abs/2302.02825

[2] https://arxiv.org/abs/1905.12334

[3] https://arxiv.org/abs/2205.05198

https://arxiv.org/abs/2302.02825
https://arxiv.org/abs/1905.12334
https://arxiv.org/abs/2205.05198

11 |

PIM JIT-Q → Capacity savings at small training throughput loss

• MX6 → Capacity savings = 12.5% , Throughput loss = 1.6%

• Harnessing capacity savings – Example LLM GPT3-175B

• Train 20% larger model or 12.5% lower tensor-slicing degree

• Capacity savings/throughput effects dependent on target MX format

0%

4%

8%

12%

16%

20%

b
e
rt

-3
4

5
M

g
p
t-

2
-1

.5
B

m
e

g
a
-l

m
-8

.3
B

t-
n

lg
-1

7
B

g
p
t-

3
-1

7
5
B

m
e

g
a
-n

lg
-5

3
0

B

p
a
lm

-5
4
0

B

fu
tu

re
-1

T

fu
tu

re
-1

0
T

fu
tu

re
-1

0
0

T

J
IT

-Q
 c

a
p

a
c
it
y
 s

a
v
in

g
s

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

b
e
rt

-3
4

5
M

g
p
t-

2
-1

.5
B

m
e

g
a
-l

m
-8

.3
B

t-
n

lg
-1

7
B

g
p
t-

3
-1

7
5
B

m
e

g
a
-n

lg
-5

3
0

B

p
a
lm

-5
4
0

B

fu
tu

re
-1

T

fu
tu

re
-1

0
T

fu
tu

re
-1

0
0

T

J
IT

-Q
 t
ra

in
in

g
 t

h
ro

u
g
h

p
u

t
n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

BF16 to MX6

More results in the paper

BF16 to MX6

12 |

Conclusion

• JIT-Q – PIM is interesting for ML

• Quantize weight tensors JIT with PIM → Avoid storing low-precision weight tensors in memory

• JIT-Q with PIM has sufficient slack vis-à-vis GPU compute

• PIM JIT-Q delivers capacity savings at marginal throughput loss

HP : High precision

LP : Low precision

W : Weights

𝑸: : QuantizationQ

Near-core JIT-QMixed precision training

Capacity

MX training JIT-Q with PIM

Data movement

WLPWHP

WLP

WLP-rowWHP

WLP-col

WLP−X

Q

WHP

WHP

WHP

WLP

Q

Processor

Memory

× × ✓ ✓

✓ ✓ × ✓

13 |

[AMD Official Use Only - General]

COPYRIGHT AND DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The
information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD
assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes
from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED “AS IS”. AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM
THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for
identification purposes only and may be trademarks of their respective companies.

© 2024 Advanced Micro Devices, Inc. All rights reserved.

	Slide 1: JIT-Q: Just-in-time Quantization with Processing-in-Memory for Efficient ML Training
	Slide 2: Executive Summary
	Slide 3: Processing-in-Memory (PIM)
	Slide 4: Opportunity for Capacity Savings
	Slide 5: Opportunity for Capacity Savings  JIT-Q with PIM
	Slide 6: PIM Quantization Kernel Considerations
	Slide 7: Key Evaluation Questions
	Slide 8: Modeling JIT-Q Slack
	Slide 9: Quantization with PIM exhibits sufficient slack to be just-in-time
	Slide 10: Modeling Throughput Effect and Capacity Savings
	Slide 11: PIM JIT-Q  Capacity savings at small training throughput loss
	Slide 12: Conclusion
	Slide 13
	Slide 14

