ACRoBat: Optimizing Auto-Batching of
Dynamic Deep Learning at Complile Time

Pratik Fegade

Tiangl Chen!Z Philli

| *

b B. Gibbons!

'Carnegie Mellon University

C Carnegie Mellon University
Computer Science Department

* Now at Google

Hiee

2QctoAl

o C oty

(3; catalyst

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

Unbatched dynamic Input batch Batched model

model impl. ; execution
: -+ @D

[

=

Wide Variety of Control Flow in DL Computations

Recursive models such as
Recurrent neural networks (RNNSs) el ST M\/_RN[\/C)\CD

-_' John
: ’—"—"—"—'H
lne movie was go0d but not oreat

O

My Hest. paime S
Farly exit models have tensor
dependent control flow StackLSTM: Complex control flow
Layers shift
| 4 | ’/,///i\\\\\\
; % g B % S' '2'?'5 D({\N V%NP\PP

put e dogsawa _y [| il RS
gprie man In the park - : Al

red-left

e

Farly exits

Batching Is Difficult for Models With Dynamic Control Flow

Recurrent neural networks
» Variable sentence length — non-uniformity in number of iterations

state = initial state 'teration over words:

. — surrounding control flow
for word in sentence:

state = RNNCell(state, word)

-——*“ I . W

rm—r

movie Was 0000 but oreat

My frst name John

SImple padding

wasteful!

4

Dynamic Batching, a Prior, Fully Runtime Approach

» Construct dataflow graphs (DFGs) for each input in mini-batch

» [raverse graphs to determine which operators can be batchec

* |nvoke batched kernels

GPU

CPU

Past Work: Compiler-Runtime Fragmentation—Suboptimal Performance

Compilation

Surrounding
control flow lensor operators
(data structures, (dot, cony, etc)
recursion)

xFragmentation

Runtime

i
eSOl BDS

m TITIT
T GPU

Fully Dynamic Auto-Batching— Execution Overheads

élnputl Input2 |nput3§

L e
e A TN
NG

s 1"35)_

WDNN] KL

« DFG construction
* DFG scheduling

ACRoBat Uses Hybrid Static and Dynamic Program Analyses

Compilation

Surrounding
control flow lensor operators
(data structures, (dot, cony, etc)
recursion)

program analyses

1 Hybrid static and dynamic

Runtime

-
ISl Ofs

m TITIT
TILLL GPU

Past Work: Compiler-Runtime Fragmentation—Suboptimal Performance

Surrounding
control flow
(data structures,

recursion) Tensor kernels often
developed/

Tensor operators
(dot, cony, etc)

Complled

. . optimized in isolation
Runtime libs. P tensor ops

() GrU

Fully Dynamic Auto-Batching— Execution Overheads

-I II
. .
u ¥ - . P
. = | N fooo e Ty .
1M Nl I'T <L
= 1D R 2 DLES ¢ coo
] ! | S"...f A UL il I AL n
- 1 n
n : ¥ n
ll

LJ

* High data movement

ACRoBat Uses Specialized Tensor Code Generation

Surrounding r
control flow ensor operators
(data structures, (dot, cony, etc)
recursion)

Specialized tensor

code generation o

Runtime libs. and optimization tensor ops

{0 e

Hybrid static &

dynamic analyses
Dynamic batching

Specialized
tensor codegen.

Inline scheduling
Grain size coarsening.

Memory gather fusion

Profile
auto-sc

info. -

NedL

or prioritizing
Ing.

Hybrid static & * Inline scheduling
OUEINIEEIREIVSS | © (Grain size coarsening. ..

Dynamic batching

Specialized

tensor codegen.

ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Goals of Scheduling/Batching

* Correctness: Respect operator dependences

» Performance: I[dentity opportunities for parallelism

Batch parallelism
.-

Dependency order

ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Unifying DFG Construction and Scheduling

Correctness: Respect operator dependences

Model computation invokes DFGs are already constructed
tensor ops In dependency order N dependency order

» Performance: I[dentity opportunities for parallelism

Parallelism often expressed via Knowledge of parallelism often
recursion or the list map function avallable statically

We can perform scheduling - Up to 2.5X better perf. for

some model configs

during graph construction!

ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Example

def treeFC(n, n idx):
def treeFC(n): if isleaf(n): Static knowledge
if isleaf(n): // Node Idx: n idx
return Emb|[words|[n]] return Emb|[words|[n]] ‘
else: » else:
il = treeFC(n.left) lh = treeFC(n.left, n 1i1dx 1)
rh = treeFC(n.right) rh = treeFC(n.right, n 1idx 1)
return W (1h rh) // Node Idx: n idx
return W (lh rh)

Nodes with the same node idx are

independent and can be batched!

Hybrid static &
dynamic analyses

Dynamic batching

Specialized
tensor codegen.

SER,

* Memory gather fusion

Profile
auto-sc

iNnfo.

NedL

for prioritizing

Ing..

ACRoBat: Specialized Tensor Code Generation

Memory Gather To Ensure Input Contiguity

* Dynamic scheduling — Iinput tensors to batched kernels scattered in memory

§ TEiorn expensive memory gather betore kernel call

tl t2 t3 t4
Scattered data

CorelCorelCore
CorelCorelCore

| 8

ACRoBat: Specialized Tensor Code Generation

Avoiding Data Movement: Fuse Memory Gather Op

» (enerate kernels to directly operate on scattered data

I I I I I\/Iemoz
oather

tl t2 t3 t4 T tl t2 t3 t4
Scattered data

N4
-

Scattered data / »

Up to |.28X better pert. tor
some model configs

19

Core | Core | Core
Core | Core | Core

ACRoBat: Compilation and Runtime VWorkflow

Unbatchec
INnput progra

Batched P
iy kernel gen.

Compilation
Runtime

Model inputs

Tensor kernels

Control flow
program

Auto-
scheduler

AOT
Compiler

A 4

O complled
control flow
program

20

Optimized
tensor kernels

Evaluation: Inference Latencies on Nvidia RTX 3070 GPU

Unrestrictea
Recursive-only control flow
I Cortex [DyNet B ACRoBat

—
2

Co

(0))

Lower Is
better

xed?‘ﬁv\ ()V"Sﬁ

Normalized Inference Latency

N NN
RN 3\?\“ o
Models (small model size, batch size 64)

2|

ACRoBat Has Low Execution Overheads

Includes memory

oather time
Model e ework Sc.hedullng Kernels I\/Ierpory mgmt. GPU. kernel
time (ms) called time (ms) time
Treel STM DyNet 18.5 1653 3.1 6.1
Small, BS564) EEE 1.9] 183 |, 0.1] 4.0
3iRNN DyNet 7.8 580 2.3 6.6
large, BS64) | AcRoBat 1.4 380 |, 0.2] 11.21

2

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

Unbatched dynamic Input batch Batched model
model impl. ; execution
@ ! .
q'— Eh » Compilation » m »
T _

Hybrid static & Specialized

dynamic analyses @ tensor codegen.

Overall ~4X

faster!

23

