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ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

Unbatched dynamic Input batch Batched model
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Wide Variety of Control Flow in DL Computations

Recursive models such as
Recurrent neural networks (RNNSs) el ST M\/_RN[\/C)\CD
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Batching Is Difficult for Models With Dynamic Control Flow

Recurrent neural networks
» Variable sentence length — non-uniformity in number of iterations

state = initial state 'teration over words:

. — surrounding control flow
for word in sentence:

state = RNNCell(state, word)
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Dynamic Batching, a Prior, Fully Runtime Approach

» Construct dataflow graphs (DFGs) for each input in mini-batch

» [raverse graphs to determine which operators can be batchec

* |nvoke batched kernels

GPU

CPU




Past Work: Compiler-Runtime Fragmentation—Suboptimal Performance

Compilation

Surrounding
control flow lensor operators
(data structures, (dot, cony, etc)
recursion)
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Runtime
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Fully Dynamic Auto-Batching— Execution Overheads
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ACRoBat Uses Hybrid Static and Dynamic Program Analyses

Compilation

Surrounding
control flow lensor operators
(data structures, (dot, cony, etc)
recursion)

program analyses

1 Hybrid static and dynamic

Runtime
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Past Work: Compiler-Runtime Fragmentation—Suboptimal Performance

Surrounding
control flow
(data structures,

recursion) Tensor kernels often
developed/

Tensor operators
(dot, cony, etc)

Complled

. . optimized in isolation
Runtime libs. P tensor ops
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Fully Dynamic Auto-Batching— Execution Overheads
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ACRoBat Uses Specialized Tensor Code Generation

Surrounding r
control flow ensor operators
(data structures, (dot, cony, etc)
recursion)

Specialized tensor

code generation o

Runtime libs. and optimization tensor ops
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Hybrid static &

dynamic analyses
Dynamic batching

Specialized
tensor codegen.

Inline scheduling
Grain size coarsening.

Memory gather fusion
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Hybrid static & * Inline scheduling
OUEINIEEIREIVSS | © (Grain size coarsening. ..

Dynamic batching

Specialized

tensor codegen.




ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Goals of Scheduling/Batching

* Correctness: Respect operator dependences

» Performance: I[dentity opportunities for parallelism

Batch parallelism
.-

Dependency order




ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Unifying DFG Construction and Scheduling

Correctness: Respect operator dependences

Model computation invokes DFGs are already constructed
tensor ops In dependency order N dependency order

» Performance: I[dentity opportunities for parallelism

Parallelism often expressed via Knowledge of parallelism often
recursion or the list map function avallable statically

We can perform scheduling - Up to 2.5X better perf. for

some model configs

during graph construction!



ACRoBat: Hybrid Static & Dynamic Analyses

Inline Scheduling: Example

def treeFC(n, n idx):
def treeFC(n): if isleaf(n): Static knowledge
if isleaf(n): // Node Idx: n idx
return Emb|[words|[n] ] return Emb|[words|[n] ] ‘
else: » else:
il = treeFC(n.left) lh = treeFC(n.left, n 1i1dx 1)
rh = treeFC(n.right) rh = treeFC(n.right, n 1idx 1)
return W (1h rh) // Node Idx: n idx
return W (lh rh)

Nodes with the same node idx are

independent and can be batched!



Hybrid static &
dynamic analyses

Dynamic batching

Specialized
tensor codegen.
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ACRoBat: Specialized Tensor Code Generation

Memory Gather To Ensure Input Contiguity

* Dynamic scheduling — Iinput tensors to batched kernels scattered in memory

§ TEiorn expensive memory gather betore kernel call
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Scattered data
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ACRoBat: Specialized Tensor Code Generation

Avoiding Data Movement: Fuse Memory Gather Op

» (enerate kernels to directly operate on scattered data

I I I I I\/Iemoz
oather

tl t2 t3 t4 T tl t2 t3 t4
Scattered data

N4
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Scattered data / »

Up to |.28X better pert. tor
some model configs
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ACRoBat: Compilation and Runtime VWorkflow

Unbatchec
INnput progra

Batched P
iy kernel gen.

Compilation
Runtime

Model inputs

Tensor kernels

Control flow
program

Auto-
scheduler

AOT
Compiler

A 4

O complled
control flow
program
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Evaluation: Inference Latencies on Nvidia RTX 3070 GPU

Unrestrictea
Recursive-only  control flow
I Cortex [ DyNet B ACRoBat
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ACRoBat Has Low Execution Overheads

Includes memory

oather time
Model e ework Sc.hedullng Kernels I\/Ierpory mgmt. GPU. kernel
time (ms) called time (ms) time
Treel STM DyNet 18.5 1653 3.1 6.1
Small, BS564) EEE 1.9] 183 |, 0.1] 4.0
3iRNN DyNet 7.8 580 2.3 6.6
large, BS64) | AcRoBat 1.4 380 |, 0.2] 11.21
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ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

Unbatched dynamic Input batch Batched model
model impl. ; execution
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Hybrid static & Specialized

dynamic analyses @ tensor codegen.

Overall ~4X

faster!
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