
ACRoBat: Optimizing Auto-Batching of
Dynamic Deep Learning at Compile Time

Pratik Fegade1*,
Tianqi Chen12, Phillip B. Gibbons1, Todd C. Mowry1

1

1Carnegie Mellon University 2OctoAI

* Now at Google

2

Unbatched dynamic
model impl.

Compilation

Input batch Batched model
execution

Runtime

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

3

John

name isMy first

Recursive models such as
TreeLSTM or MV-RNN

…Inputs

Early exits

Layers

Early exit models have tensor
dependent control flow

The dog saw a
man in the park

m
a
n

t
h
e

i
n

p
a
r
ka

d
o
g

s
a
w

T
h
e

shift

…
red-left

shift

StackLSTM: Complex control flow

Wide Variety of Control Flow in DL Computations

The movie was notbutgood great

Recurrent neural networks (RNNs)

Batching Is Difficult for Models With Dynamic Control Flow

4

• Recurrent neural networks
• Variable sentence length non-uniformity in number of iterations→

state = initial_state
for word in sentence:
 state = RNNCell(state, word)

I am fine

The movie was notbutgood great

My first name Johnis

Simple padding
wasteful!

Iteration over words:
surrounding control flow

5

• Construct dataflow graphs (DFGs) for each input in mini-batch
• Traverse graphs to determine which operators can be batched
• Invoke batched kernels

GPU
cuDNN

CPU
MKL

…Input1 Input2 Input3

Dynamic Batching, a Prior, Fully Runtime Approach

6

Past Work: Compiler-Runtime Fragmentation Suboptimal Performance→

Surrounding
control flow

(data structures,
recursion)

Tensor operators
(dot, conv, etc)

Compilation

Runtime libs.

CPU

Compiled
tensor ops

GPU

Runtime

Fragmentation

7

GPU
cuDNN

CPU
MKL

…Input1 Input2 Input3

• DFG construction
• DFG scheduling

Fully Dynamic Auto-Batching Execution Overheads→

8

ACRoBat Uses Hybrid Static and Dynamic Program Analyses

Surrounding
control flow

(data structures,
recursion)

Tensor operators
(dot, conv, etc)

Compilation

Runtime libs.

CPU

Compiled
tensor ops

GPU

Runtime

Hybrid static and dynamic
program analyses

9

Past Work: Compiler-Runtime Fragmentation Suboptimal Performance→

Tensor operators
(dot, conv, etc)

Compiled
tensor ops

GPU

Surrounding
control flow

(data structures,
recursion)

Runtime libs.

CPU

Tensor kernels often
developed/

optimized in isolation

10

• High data movement

Fully Dynamic Auto-Batching Execution Overheads→

GPU
cuDNN

CPU
MKL

…Input1 Input2 Input3

11

ACRoBat Uses Specialized Tensor Code Generation

Tensor operators
(dot, conv, etc)

Compiled
tensor ops

GPU

Surrounding
control flow

(data structures,
recursion)

Runtime libs.

CPU

Specialized tensor
code generation
and optimization

12

Unbatched model
implementation

Specialized
tensor codegen.

Hybrid static &
dynamic analyses

+

Input batch

Compilation Runtime

Dynamic batching
Past fully dynamic auto-

batching technique

Batched model
execution

• Memory gather fusion
• Profile info. for prioritizing

auto-scheduling…

• Inline scheduling
• Grain size coarsening…

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

13

Unbatched model
implementation

Specialized
tensor codegen.

Hybrid static &
dynamic analyses

+

Input batch

Compilation Runtime

Dynamic batching
Past fully dynamic auto-

batching technique

Batched model
execution

• Memory gather fusion
• Profile info. for prioritizing

auto-scheduling…

• Inline scheduling
• Grain size coarsening…

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

14

Inline Scheduling: Goals of Scheduling/Batching
ACRoBat: Hybrid Static & Dynamic Analyses

• Correctness: Respect operator dependences

• Performance: Identify opportunities for parallelism

Dependency order

Batch parallelism

15

Inline Scheduling: Unifying DFG Construction and Scheduling
ACRoBat: Hybrid Static & Dynamic Analyses

• Correctness: Respect operator dependences

• Performance: Identify opportunities for parallelism

Model computation invokes
tensor ops in dependency order

DFGs are already constructed
in dependency order

Parallelism often expressed via
recursion or the list map function

Knowledge of parallelism often
available statically

We can perform scheduling
during graph construction!

Up to 2.5X better perf. for
some model configs

16

Inline Scheduling: Example
ACRoBat: Hybrid Static & Dynamic Analyses

def treeFC(n):
 if isleaf(n):
 return Emb[words[n]]
 else:
 lh = treeFC(n.left)
 rh = treeFC(n.right)
 return W * (lh + rh)

Nodes with the same node_idx are
independent and can be batched!

def treeFC(n, n_idx):
 if isleaf(n):  
 // Node Idx: n_idx
 return Emb[words[n]]
 else:
 lh = treeFC(n.left, n_idx + 1)
 rh = treeFC(n.right, n_idx + 1)  
 // Node Idx: n_idx
 return W * (lh + rh)

Static knowledge
of parallelism

17

Unbatched model
implementation

Specialized
tensor codegen.

Hybrid static &
dynamic analyses

+

Input batch

Compilation Runtime

Dynamic batching
Past fully dynamic auto-

batching technique

Batched model
execution

• Memory gather fusion
• Profile info. for prioritizing

auto-scheduling…

• Inline scheduling
• Grain size coarsening…

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

• Dynamic scheduling input tensors to batched kernels scattered in memory
• Perform expensive memory gather before kernel call

→

18

Memory Gather To Ensure Input Contiguity
ACRoBat: Specialized Tensor Code Generation

t1 t2 t3 t4

Core

Core

Core

Core

Core

Core

T

Memory
gather

Scattered data

• Generate kernels to directly operate on scattered data

19

Avoiding Data Movement: Fuse Memory Gather Op
ACRoBat: Specialized Tensor Code Generation

Core

Core

Core

Core

Core

Core

T

Memory
gather

Scattered data

t1 t2 t3 t4

Core

Core

Core

Core

Core

Core

Scattered data
t1 t2 t3 t4

Up to 1.28X better perf. for
some model configs

Compilation
Runtime

20

Unbatched
input program

Optimized
tensor kernels

Auto-
scheduler

AOT compiled
control flow

program

AOT
Compiler

Batched
kernel gen.

Control flow
program

Tensor kernels

Model inputs Scheduler

ACRoBat: Compilation and Runtime Workflow

21

Models (small model size, batch size 64)

N
or

m
ali

ze
d

In
fe

re
nc

e
La

te
nc

y

3.98X

1.27X

Cortex DyNet ACRoBat
Recursive-only

Unrestricted
control flow

Evaluation: Inference Latencies on Nvidia RTX 3070 GPU

Lower is
better

22

Model Framework Scheduling
time (ms)

Kernels
called

Memory mgmt.
time (ms)

GPU kernel
time

TreeLSTM
(small, BS 64)

DyNet 18.5 1653 3.1 6.1

ACRoBat 1.9 183 0.1 4.0

BiRNN
(large, BS 64)

DyNet 7.8 580 2.3 6.6

ACRoBat 1.4 380 0.2 11.2

↓

↓

↓

↓

↓

↓

↓

↑

Includes memory
gather time

ACRoBat Has Low Execution Overheads

23

Unbatched dynamic
model impl.

Compilation

Input batch Batched model
execution

Runtime

Specialized
tensor codegen.

Hybrid static &
dynamic analyses

ACRoBat: Efficient Auto-Batching for Dynamic Control Flow

Overall ~4X
faster!

