
LIFL: A Lightweight, Event-driven Serverless
Platform for Federated Learning

Shixiong Qi† K. K. Ramakrishnan† Myungjin Lee★
★

Visit us at:
https://kknetsyslab.cs.ucr.edu/
https://research.cisco.com/

24

https://kknetsyslab.cs.ucr.edu/
https://research.cisco.com/

2

Client Client Client Client Client

A Quick Primer on Federated Learning

• Federated Learning (FL) helps
• Learn on fresh real-world data
• Reduce data privacy leakage

• Execution of FL
• Client selection
• On-device Training
• Model Aggregation

Model Aggregation Server

Client Client Client Client Client Client Client

(1) Client
selection

(3) Model
Aggregation

(2) On-device Training

Keyboard prediction Healthcare

Federated Learning Platform
 in the Cloud

3

Federated Learning Platform• Model aggregation server (based on various
commercial[1,2] and open-source[3] platforms)
• Coordinator:

• Orchestrating interactions among aggregators,
selectors, and clients

• Aggregator:
• Hierarchical aggregation

• Selector:
• Selecting clients to participate in the FL process
• Client-aggregator mapping

• Use Cloud to scale FL training to many clients

Existing System Design for Federated Learning

[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." MLsys 2019.
[2] Huba, Dzmitry, et al. "Papaya: Practical, private, and scalable federated learning." MLsys 2022.
[3] Daga, Harshit, et al. “Flame: Simplifying Topology Extension in Federated Learning.” ACM SoCC’23.

Top
Aggregator

Middle
Aggregator

Middle
Aggregator

Leaf
Aggregator

Leaf
Aggregator

Leaf
Aggregator

Leaf
Aggregator

Client Client Client Client Client Client Client

Selector

Coordinator

4

0

20

40

60

80

1 7 12 17 23 30 35
HOURS

of Aggregators

0

200

400

600

800

1 7 12 17 23 30 35
HOURS

Server Load

0

2000

4000

6000

8000

1 5 8 12 17 21 26 30 34
HOURS

of Participating Clients

Existing System Design for Federated Learning

• High variability of # of FL clients
• Real-world trace from GBoard[1]

• Serverful FL systems lack elasticity

Problem statement

[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." MLsys 2019.

0

20

40

60

80

1 7 12 17 23 30 35
HOURS

of Aggregators

5

A “Serverless” Cloud for Federated Learning

• “Event-driven” Execution: Applications are triggered based on events,
terminated upon event completion
• Fine-grained resource elasticity

• True “Pay-as-you-go” Billing: Pay only for the duration of execution of
an application. No charge when the application is idle
• Fine-grained billing

Basics of Serverless Computing

6

Aggregator

AggregatorAggregator Aggregator Aggregator

Aggregator Aggregator

A “Serverless” Cloud for Federated Learning
An abstract functional view

Based on Knative Node 2

Control plane

AutoscalerPlacement
engine

Message
Broker

Requests

Function
Sidecar container

Aggregator

Find a node for
placing a function

Metrics collection

Scale functions
based on load

• Serverless function is short-lived and stateless
• Following the lifecycle of the event
• Implication: Serverless function cannot

perform “stateful processing”

Node 1

Function
Sidecar container

Aggregator Inter-function
networking

7

A “Serverless” Cloud for FL

• Existing serverless FL systems[1,2] offer
elasticity, but data plane is heavyweight[3]

• +① Kernel-based networking
• +② Container-based sidecar
• +③ Message broker

• Control plane is suboptimal
• Primary designed for web applications

Unable to support efficient FL aggregation

Event-driven model aggregation

[1] Jayaram, K. R., et al. "Just-in-Time Aggregation for Federated Learning." IEEE MASCOTS 2022.
[2] Grafberger, Andreas, et al. "Fedless: Secure and scalable federated learning using serverless computing." IEEE Big Data 2021.
[3] Qi, Shixiong, et al. "SPRIGHT: extracting the server from serverless computing! high-performance eBPF-based event-driven,
shared-memory processing." ACM SIGCOMM 2022.

0

0.5

1

1.5

2

2.5

ResNet-18

Normalized CPU Cost (single
model update transfer)

+① +①+② +①+②+③

0

0.5

1

1.5

2

2.5

ResNet-18

Normalized Latency (single
model update transfer)

8

Federated Learning System (Serverful)

Aggregator

Aggregator Aggregator

Aggregator Aggregator AggregatorAggregator

Client Client Client Client Client Client Client

Selector

Coordinator

Federated Learning System (Serverless)

Aggregator

Aggregator Aggregator

Aggregator Aggregator AggregatorAggregator

Client Client Client Client Client Client Client

Selector

Serverless Control Plane Coordinator

Sidecar

Sidecar Sidecar

SidecarSidecarSidecar Sidecar

Message
broker

LIFL: Lightweight FL with an optimized serverless design

• Streamline the serverless data plane
• Use eBPF to offload sidecar and message broker
• Use shared memory processing to speed up

hierarchical aggregation

• Control plane optimization
• Locality-aware placement
• Hierarchy-aware scaling
• Aggregator reusing
• Eager aggregation

Two primary focus in LIFL
Federated Learning System (LIFL)

Aggregator

Aggregator Aggregator

Aggregator Aggregator AggregatorAggregator

Client Client Client Client Client Client Client

Selector

Serverless Control Plane Coordinator

Shared
Mem. PooleBPF Sidecar

eBPF Sidecar eBPF Sidecar eBPF Sidecar eBPF Sidecar

eBPF Sidecar eBPF Sidecar
eBPF map

9

Data Plane Optimizations in LIFL

• eBPF: a code snippet attached to a specific “hookpoint” in
the kernel

• eBPF supports event-driven execution
• NO cost when idle

• eBPF’s stateful processing
• In-kernel eBPF map
• Metrics collection, Routing between aggregators

+① eBPF-based stateful processing

Kernel protocol stack

Aggregator Aggregator
Sidecar

Container
eBPF

Sidecar
Sidecar

Container
eBPF

Sidecar

eBPF map

Message
Broker

0

5

10

15

20

25

ResNet-18 ResNet-34 ResNet-152

CP
U

 C
YC

LE
S

(x
 1

09
)

CPU Cost (single model
update transfer)

Baseline +① +①+②

0

1

2

3

4

5

ResNet-18 ResNet-34 ResNet-152

LA
TE

N
CY

 (S
)

Latency (single model
update transfer)

0

5

10

15

20

25

ResNet-18 ResNet-34 ResNet-152

CP
U

 C
YC

LE
S

(x
 1

09
)

CPU Cost (single model
update transfer)

Baseline +① +①+②

0

1

2

3

4

5

ResNet-18 ResNet-34 ResNet-152

LA
TE

N
CY

 (S
)

Latency (single model
update transfer)

10

Data Plane Optimizations in LIFL

• Bypass the kernel
• Overhead saving by shared memory processing

• Context switch, interrupt, copy, protocol processing,
serialization/de-serialization

• Pass by reference

+② Shared memory processing for hierarchical aggregation

Kernel protocol stack

Aggregator Aggregator

Kernel-based Networking

Shared Memory Processing

copy copy
cxt sw cxt swirq irq

irq irqproto. proto.

ser. deser.irq

irq

Shared Mem. Pool data

Kernel protocol stack

0

5

10

15

20

25

ResNet-18 ResNet-34 ResNet-152

CP
U

 C
YC

LE
S

(x
 1

09
)

CPU Cost (single model
update transfer)

Baseline +① +①+②

0

1

2

3

4

5

ResNet-18 ResNet-34 ResNet-152

LA
TE

N
CY

 (S
)

Latency (single model
update transfer)

0

5

10

15

20

25

ResNet-18 ResNet-34 ResNet-152

CP
U

 C
YC

LE
S

(x
 1

09
)

CPU Cost (single model
update transfer)

Baseline +① +①+②

0

1

2

3

4

5

ResNet-18 ResNet-34 ResNet-152

LA
TE

N
CY

 (S
)

Latency (single model
update transfer)

11

Control Plane Optimizations in LIFL

• Inter-node communication still uses kernel networking
• Maximize shared memory processing

• Approached as a bin-packing problem
• We choose BestFit for LIFL

• Concentrates load onto the fewest nodes possible
• Existing serverless design (e.g., Knative) use WorstFit

• Spread the load across more nodes

+① Locality-aware Placement

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

Worker Node 1

SHARED MEMORY

Agg. Agg.

Worker Node 2

SHARED MEMORY

Agg. Agg.

Worker Node 1

SHARED MEMORY

Agg. Agg.

Worker Node 2

SHARED MEMORY

Agg. Agg.

Client Client Client Client Client Client Client Client

LIFL (BESTFIT) KNATIVE (WORSTFIT)

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

12

Control Plane Optimizations in LIFL

• We use Exponentially Weighted Moving Average to
estimate arrival rate of model updates on each node

• Maximize the parallelism of aggregation at each level

+② Hierarchy-aware Scaling

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

Aggregator

Aggregator Aggregator

Aggregator Aggregator AggregatorAggregator

eBPF Sidecar

eBPF Sidecar eBPF Sidecar eBPF Sidecar eBPF Sidecar

eBPF Sidecar eBPF Sidecar

Model updates

Aggregator

Aggregator Aggregator
eBPF Sidecar eBPF Sidecar

eBPF Sidecar

13

Control Plane Optimizations in LIFL

• Aggregators at the higher level are often idle
• While the leaf aggregators are working
• Vice versa

• Aggregators in LIFL are homogeneous
• Same simple function of summation

+③ Aggregator Reusing

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Reuse

Reuse

Reuse

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

Aggregator
eBPF Sidecar

14

Control Plane Optimizations in LIFL

Key idea: aggregate the arriving updates immediately
• Leverage the overlap between the start-up delay and

transfers of model updates, allowing eager aggregation to
mask cold starts up until the last model update

+④ Eager Aggregation

Lazy Aggregator

Client

RecvAgg.

Client

Client

Client

Base weights Model updates

Eager Aggregator

Client

RecvAgg.

Client

Client

Client

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

0

50

100

20 updates 60 updates

CP
U

 T
IM

E
(S

)

Cumulative CPU Time

0
10
20
30
40

20 updates 60 updates

O

F
AG

G
.

of aggregators created

0

10

20

30

20 updates 60 updates

SE
CO

N
D

S

Agg. Completion Time (s)

Baseline +①

+①+② +①+②+③

+①+②+③+④

15

Put it all together

Alternatives
• LIFL vs. Knative-based Serverless vs. Always-on Serverful

Workload (from FedScale[1]):
• ResNet-18 FL clients (a total of 2,800 clients used)
• FEMNIST dataset
• Varying load

Implementation of LIFL is based on FLAME[2] – an extensible framework that eases
support for new FL training topologies and their workloads

Evaluating LIFL’s data and control plane

[1] Lai, Fan, et al. "Fedscale: Benchmarking model and system performance of federated learning at scale." International conference on machine learning. PMLR, 2022.
[2] Daga, Harshit, et al. “Flame: Simplifying Topology Extension in Federated Learning.” ACM SoCC’23.

0
20
40
60
80

100
120

0.0 0.5 1.0 1.5 2.0

AR
RI

VA
L

RA
TE

 P
ER

 M
IN

U
TE

S

WALL-CLOCK TIME (HOURS)

Update arrival rate

16

Put it all together

Overall outcomes:
• LIFL achieves1.6X faster time-to-accuracy

than Serverful and 2.7X faster than
Serverless
• LIFL has 1.8X less CPU time cost than

Serverful and 5.7X less than Serverless

Serverful vs. Serverless vs. LIFL

Our design makes FL aggregation
more efficient and faster!

For how LIFL trains a more heavyweight ResNet-152 model,
please refer to our paper

0
10
20

30
40
50

60
70
80
90

0 10 20 30 40 50

AC
CU

RA
CY

 (%
)

WALL-CLOCK TIME (HOURS)

CPU TIME COST

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5

AC
CU

RA
CY

 (%
)

WALL-CLOCK TIME (HOURS)

Time-to-accuracy

Serverful Serverless LIFL

17

Conclusion

• Dependency on cloud to scale FL training to many clients
• Serverless computing is an ideal fit for varying FL aggregation workload

• Existing serverless designs involve heavyweight data plane and suboptimal control plane

• LIFL incorporates the control and data plane optimizations in serverless computing
• Truly deliver the promise of serverless
• Make the FL aggregation more efficient and faster

• LIFL is open-sourced as part of Flame
• ☞ Find LIFL at: https://github.com/cisco-open/flame.git
• If you have any questions or comments, please feel free to email us (flame-github-

owners@cisco.com and sqi009@ucr.edu)

https://github.com/cisco-open/flame.git
mailto:flame-github-owners@cisco.com
mailto:flame-github-owners@cisco.com

Networked
Systems Group

Backup Slides

19

User Container

Basics of extended Berkeley Packet Filter (eBPF)

Userspace

BPF
verifier

Event:
packet

Compilation & Loading Verification

Update metrics
To autoscaler

Kernel

socket interface

metrics

eBPF
map

Hook

To other
function

eBPF’s Kernel Injection & Event-driven Execution

#include <linux/bpf.h>

int bpf_msg_tx(…) {
 metrics_collection();
}

eBPF program (C code)

#include <linux/bpf.h>

int bpf_msg_tx(…) {
 metrics_collection();
}

20

Basics of extended Berkeley Packet Filter (eBPF)

• Various hook points in kernel
• Sockets, protocol stack, network device drivers, …

• Programmability
• Dynamic Loading; No change to the kernel
• Transparent to the user function

• Stateful processing offloaded to kernel
• eBPF Map
• Help in keeping states, e.g., routes, metrics

Features of eBPF

Application

socket

TCP/IP

ETH

NIC

userspace
kernel

eBPF map

21

eBPF-based Event-driven Sidecar in LIFL

• In-kernel eBPF-based “sidecar”
• Sidecar being injected at the socket interface

• Metric Collection
• Traffic Filtering
• Routing

• All in the kernel
• Avoid extra user-kernel boundary crossings

• Purely event-driven
• No CPU overhead when there are no requests

Kernel protocol stack

Function 1

Kernel protocol stack

veth-pair

User
Container

Sidecar
Container

Function 2

Kernel protocol stack

veth-pair

User
Container

Sidecar
Container

Function 1

Kernel protocol stack

User Container
Function 2

Kernel protocol stack

User Container

socket socket

Container-based sidecar

eBPF-based sidecar

22

Direct Function Routing in LIFL

• Serverless aggregators are stateless
• Offloaded stateful processing (routing) to

message broker

• Having the broker perform invocations
between aggregators is unnecessary
• Routing overhead

• Direct Function Routing in LIFL
• Offloading routes to in-kernel eBPF map
• Bypassing the userspace broker

Kernel protocol stack

Aggregator
2

Aggregator
1

Message
Broker

routes

Kernel protocol stack

Aggregator
2

Aggregator
1

routes

Indirect Function Routing

Direct Function Routing

23

Shared Memory Processing

• How to handle protocol processing?
• LIFL Gateway: Entry-point of a local

hierarchy
• Consolidate kernel protocol processing
• Move model updates into shared memory

• Shared memory processing between
aggregators
• “Pass-by-reference” instead of “Pass-by-

value”
• We use eBPF to deliver references

• Socket-to-socket transfer

Kernel protocol stack

Physical NIC

Worker Node

Agg. 1
LIFL

Gateway

Agg. 2

Shared Mem. Pool

Headers PayloadgRPC request

Headers PayloadgRPC
response

External client

24

How to secure shared memory processing

• Trust model: functions within a chain trust each other, functions in different
chains may not
• We construct a security domain for each function chain

• a private shared memory pool for each chain

Our Solution: Security domain

Kernel protocol stack

Security Domain #1

Worker
Node

Function 1 Function 2 Function 3

Shared Mem. Pool #1

Gateway

Security Domain #2
Function 1 Function 2 Function 3

Shared Mem. Pool #2

Gateway

Physical NIC

Traffic to security domain #2 Traffic to security domain #1

25

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3

of ctxt
switches

3

of irqs 7

of proto.
processing

3

of
serialization

1

of
deserialization

2

Ingress
Gateway

Kernel
protocol

stack

Kernel protocol stack

veth-pair

Container

Message
Broker

Kernel
protocol

stack

veth-pair

Container

Function 1

Kernel
protocol

stack

veth-pair

User
Container

Physical NIC

Sidecar
Container

Function 2

Kernel
protocol

stack

veth-pair

User
Container

Sidecar
Container

Worker Node

Auditing the Overheads of Serverless Data Plane
Processing involved in a typical serverless function chain setup

Data Pipeline
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

of copies 3 12 15

of ctxt
switches

3 12 15

of irqs 7 18 25

of proto.
processing

3 9 12

of
serialization

1 6 7

of
deserialization

2 6 8

External client

⑤ Message Broker ⇒ Function 2

