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A Quick Primer on Federated Learning

• Federated Learning (FL) helps
• Learn on fresh real-world data
• Reduce data privacy leakage

• Execution of FL
• Client selection
• On-device Training
• Model Aggregation

Model Aggregation Server

Client Client Client Client Client Client Client

(1) Client 
selection

(3) Model 
Aggregation

(2) On-device Training

Keyboard prediction Healthcare

Federated Learning Platform
 in the Cloud
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Federated Learning Platform• Model aggregation server (based on various 
commercial[1,2] and open-source[3] platforms)
• Coordinator:

• Orchestrating interactions among aggregators, 
selectors, and clients

• Aggregator:
• Hierarchical aggregation

• Selector:
• Selecting clients to participate in the FL process
• Client-aggregator mapping

• Use Cloud to scale FL training to many clients 

Existing System Design for Federated Learning

[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." MLsys 2019.
[2] Huba, Dzmitry, et al. "Papaya: Practical, private, and scalable federated learning." MLsys 2022.
[3] Daga, Harshit, et al. “Flame: Simplifying Topology Extension in Federated Learning.” ACM SoCC’23.
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Existing System Design for Federated Learning

• High variability of # of FL clients
• Real-world trace from GBoard[1]

• Serverful FL systems lack elasticity

Problem statement

[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." MLsys 2019.
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A “Serverless” Cloud for Federated Learning

• “Event-driven” Execution: Applications are triggered based on events, 
terminated upon event completion
• Fine-grained resource elasticity

• True “Pay-as-you-go” Billing: Pay only for the duration of execution of 
an application. No charge when the application is idle
• Fine-grained billing

Basics of Serverless Computing
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Aggregator
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Aggregator Aggregator

A “Serverless” Cloud for Federated Learning
An abstract functional view

Based on Knative Node 2

Control plane

AutoscalerPlacement 
engine

Message 
Broker

Requests

Function
Sidecar container

Aggregator

Find a node for 
placing a function

Metrics collection

Scale functions 
based on load

• Serverless function is short-lived and stateless
• Following the lifecycle of the event
• Implication: Serverless function cannot 

perform “stateful processing”

Node 1

Function
Sidecar container

Aggregator Inter-function 
networking
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A “Serverless” Cloud for FL

• Existing serverless FL systems[1,2] offer 
elasticity, but data plane is heavyweight[3]

• +① Kernel-based networking
• +② Container-based sidecar
• +③ Message broker

• Control plane is suboptimal
• Primary designed for web applications

Unable to support efficient FL aggregation

Event-driven model aggregation

[1] Jayaram, K. R., et al. "Just-in-Time Aggregation for Federated Learning." IEEE MASCOTS 2022.
[2] Grafberger, Andreas, et al. "Fedless: Secure and scalable federated learning using serverless computing." IEEE Big Data 2021.
[3] Qi, Shixiong, et al. "SPRIGHT: extracting the server from serverless computing! high-performance eBPF-based event-driven, 
shared-memory processing." ACM SIGCOMM 2022.
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Federated Learning System (Serverful)
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Federated Learning System (Serverless)
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LIFL: Lightweight FL with an optimized serverless design

• Streamline the serverless data plane
• Use eBPF to offload sidecar and message broker
• Use shared memory processing to speed up 

hierarchical aggregation

• Control plane optimization
• Locality-aware placement
• Hierarchy-aware scaling
• Aggregator reusing
• Eager aggregation

Two primary focus in LIFL
Federated Learning System (LIFL)

Aggregator

Aggregator Aggregator
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Selector

Serverless Control Plane Coordinator

Shared 
Mem. PooleBPF Sidecar

eBPF Sidecar eBPF Sidecar eBPF Sidecar eBPF Sidecar

eBPF Sidecar eBPF Sidecar
eBPF map
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Data Plane Optimizations in LIFL

• eBPF: a code snippet attached to a specific “hookpoint” in 
the kernel 

• eBPF supports event-driven execution
• NO cost when idle

• eBPF’s stateful processing 
• In-kernel eBPF map
• Metrics collection, Routing between aggregators

+① eBPF-based stateful processing

Kernel protocol stack
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Data Plane Optimizations in LIFL

• Bypass the kernel
• Overhead saving by shared memory processing

• Context switch, interrupt, copy, protocol processing, 
serialization/de-serialization

• Pass by reference

+② Shared memory processing for hierarchical aggregation

Kernel protocol stack

Aggregator Aggregator

Kernel-based Networking

Shared Memory Processing

copy copy
cxt sw cxt swirq irq

irq irqproto. proto.

ser. deser.irq

irq

Shared Mem. Pool data

Kernel protocol stack
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Control Plane Optimizations in LIFL

• Inter-node communication still uses kernel networking
• Maximize shared memory processing

• Approached as a bin-packing problem
• We choose BestFit for LIFL

• Concentrates load onto the fewest nodes possible
• Existing serverless design (e.g., Knative) use WorstFit

• Spread the load across more nodes

+① Locality-aware Placement
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Control Plane Optimizations in LIFL

• We use Exponentially Weighted Moving Average to 
estimate arrival rate of model updates on each node

• Maximize the parallelism of aggregation at each level

+② Hierarchy-aware Scaling
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Control Plane Optimizations in LIFL

• Aggregators at the higher level are often idle
• While the leaf aggregators are working
• Vice versa

• Aggregators in LIFL are homogeneous
• Same simple function of summation

+③ Aggregator Reusing
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Control Plane Optimizations in LIFL

Key idea: aggregate the arriving updates immediately
• Leverage the overlap between the start-up delay and 

transfers of model updates, allowing eager aggregation to 
mask cold starts up until the last model update

+④ Eager Aggregation
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Put it all together

Alternatives
• LIFL vs. Knative-based Serverless vs. Always-on Serverful

Workload (from FedScale[1]):
• ResNet-18 FL clients (a total of 2,800 clients used)
• FEMNIST dataset
• Varying load

Implementation of LIFL is based on FLAME[2] – an extensible framework that eases 
support for new FL training topologies and their workloads

Evaluating LIFL’s data and control plane

[1] Lai, Fan, et al. "Fedscale: Benchmarking model and system performance of federated learning at scale." International conference on machine learning. PMLR, 2022.
[2] Daga, Harshit, et al. “Flame: Simplifying Topology Extension in Federated Learning.” ACM SoCC’23.
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Put it all together

Overall outcomes:
• LIFL achieves1.6X faster time-to-accuracy 

than Serverful and 2.7X faster than 
Serverless
• LIFL has 1.8X less CPU time cost than 

Serverful and 5.7X less than Serverless

Serverful vs. Serverless vs. LIFL

Our design makes FL aggregation 
more efficient and faster!

For how LIFL trains a more heavyweight ResNet-152 model, 
please refer to our paper
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Conclusion

• Dependency on cloud to scale FL training to many clients
• Serverless computing is an ideal fit for varying FL aggregation workload

• Existing serverless designs involve heavyweight data plane and suboptimal control plane

• LIFL incorporates the control and data plane optimizations in serverless computing
• Truly deliver the promise of serverless 
• Make the FL aggregation more efficient and faster

• LIFL is open-sourced as part of Flame
• ☞ Find LIFL at: https://github.com/cisco-open/flame.git
• If you have any questions or comments, please feel free to email us (flame-github-

owners@cisco.com and sqi009@ucr.edu)

https://github.com/cisco-open/flame.git
mailto:flame-github-owners@cisco.com
mailto:flame-github-owners@cisco.com
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User Container

Basics of extended Berkeley Packet Filter (eBPF)

Userspace

BPF 
verifier

Event: 
packet

Compilation & Loading Verification

Update metrics
To autoscaler

Kernel

socket interface

metrics

eBPF 
map

Hook

To other 
function

eBPF’s Kernel Injection & Event-driven Execution

#include <linux/bpf.h> 

int bpf_msg_tx(…) {
      metrics_collection();
}

eBPF program (C code)

#include <linux/bpf.h> 

int bpf_msg_tx(…) {
      metrics_collection();
}
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Basics of extended Berkeley Packet Filter (eBPF)

• Various hook points in kernel
• Sockets, protocol stack, network device drivers, …

• Programmability 
• Dynamic Loading; No change to the kernel
• Transparent to the user function

• Stateful processing offloaded to kernel
• eBPF Map
• Help in keeping states, e.g., routes, metrics

Features of eBPF

Application

socket

TCP/IP

ETH

NIC

userspace
kernel

eBPF map
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eBPF-based Event-driven Sidecar in LIFL

• In-kernel eBPF-based “sidecar”
• Sidecar being injected at the socket interface

• Metric Collection
• Traffic Filtering
• Routing

• All in the kernel
• Avoid extra user-kernel boundary crossings

• Purely event-driven
• No CPU overhead when there are no requests

Kernel protocol stack

Function 1

Kernel protocol stack

veth-pair

User 
Container

Sidecar 
Container

Function 2

Kernel protocol stack

veth-pair

User 
Container

Sidecar 
Container

Function 1

Kernel protocol stack

User Container
Function 2

Kernel protocol stack

User Container

socket socket

Container-based sidecar

eBPF-based sidecar
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Direct Function Routing in LIFL

• Serverless aggregators are stateless
• Offloaded stateful processing (routing) to 

message broker

• Having the broker perform invocations 
between aggregators is unnecessary
• Routing overhead

• Direct Function Routing in LIFL
• Offloading routes to in-kernel eBPF map
• Bypassing the userspace broker

Kernel protocol stack

Aggregator 
2

Aggregator 
1

Message 
Broker

routes

Kernel protocol stack

Aggregator 
2

Aggregator 
1

routes

Indirect Function Routing

Direct Function Routing
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Shared Memory Processing

• How to handle protocol processing?
• LIFL Gateway: Entry-point of a local 

hierarchy
• Consolidate kernel protocol processing
• Move model updates into shared memory

• Shared memory processing between 
aggregators
• “Pass-by-reference” instead of “Pass-by-

value”
• We use eBPF to deliver references

• Socket-to-socket transfer

Kernel protocol stack

Physical NIC

Worker Node

Agg. 1
LIFL 

Gateway

Agg. 2

Shared Mem. Pool

Headers PayloadgRPC request

Headers PayloadgRPC 
response

External client
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How to secure shared memory processing

• Trust model: functions within a chain trust each other, functions in different 
chains may not
• We construct a security domain for each function chain

• a private shared memory pool for each chain

Our Solution: Security domain

Kernel protocol stack

Security Domain #1

Worker 
Node

Function 1 Function 2 Function 3

Shared Mem. Pool #1

Gateway

Security Domain #2
Function 1 Function 2 Function 3

Shared Mem. Pool #2

Gateway

Physical NIC

Traffic to security domain #2 Traffic to security domain #1 
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Data Pipeline 
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

# of copies 3

# of ctxt 
switches

3

# of irqs 7

# of proto. 
processing

3

# of 
serialization

1

# of 
deserialization

2

Ingress 
Gateway

Kernel 
protocol 

stack

Kernel protocol stack

veth-pair

Container

Message 
Broker

Kernel 
protocol 

stack

veth-pair

Container

Function 1

Kernel 
protocol 

stack

veth-pair

User 
Container

Physical NIC

Sidecar 
Container

Function 2

Kernel 
protocol 

stack

veth-pair

User 
Container

Sidecar 
Container

Worker Node

Auditing the Overheads of Serverless Data Plane
Processing involved in a typical serverless function chain setup

Data Pipeline 
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

# of copies 3 12 15

# of ctxt 
switches

3 12 15

# of irqs 7 18 25

# of proto. 
processing

3 9 12

# of 
serialization

1 6 7

# of 
deserialization

2 6 8

External client

⑤ Message Broker ⇒ Function 2


