MLSys **24**

LIFL: A Lightweight, Event-driven Serverless **Platform for Federated Learning**

Shixiong Qi[†] K. K. Ramakrishnan[†]

†University of California, Riverside

Myungjin Lee*

*Cisco Research

Visit us at:

https://kknetsyslab.cs.ucr.edu/

https://research.cisco.com/

A Quick Primer on Federated Learning

Federated Learning (FL) helps

- Learn on fresh real-world data
- Reduce data <u>privacy</u> leakage

Keyboard prediction

Healthcare

Execution of FL

- Client selection
- On-device Training
- Model Aggregation

Existing System Design for Federated Learning

- Model aggregation server (based on various commercial^[1,2] and open-source^[3] platforms)
 - Coordinator:
 - Orchestrating interactions among aggregators, selectors, and clients
 - Aggregator:
 - Hierarchical aggregation
 - Selector:
 - Selecting clients to participate in the FL process
 - Client-aggregator mapping
- Use **Cloud** to scale FL training to many clients

^[1] Bonawitz, Keith, et al. "Towards federated learning at scale: System design." MLsys 2019.

^[2] Huba, Dzmitry, et al. "Papaya: Practical, private, and scalable federated learning." MLsys 2022.

^[3] Daga, Harshit, et al. "Flame: Simplifying Topology Extension in Federated Learning." ACM SoCC'23.

Existing System Design for Federated Learning

Problem statement

- High variability of # of FL clients
 - Real-world trace from GBoard^[1]
- Serverful FL systems lack elasticity

A "Serverless" Cloud for Federated Learning

Basics of Serverless Computing

- "Event-driven" Execution: Applications are triggered based on events, terminated upon event completion
 - Fine-grained resource elasticity
- <u>True</u> "Pay-as-you-go" Billing: Pay only for the duration of execution of an application. No charge when the application is idle
 - Fine-grained billing

A "Serverless" Cloud for Federated Learning

An abstract functional view

A "Serverless" Cloud for FL

Event-driven model aggregation

- Existing **serverless** FL systems^[1,2] offer elasticity, but data plane is **heavyweight**^[3]
 - +1 Kernel-based networking
 - +(2) Container-based sidecar
 - +3 Message broker
- Control plane is suboptimal
 - Primary designed for web applications

Unable to support efficient FL aggregation

Normalized CPU Cost (single model update transfer)

Normalized Latency (single model update transfer)

^[1] Jayaram, K. R., et al. "Just-in-Time Aggregation for Federated Learning." IEEE MASCOTS 2022.

^[2] Grafberger, Andreas, et al. "Fedless: Secure and scalable federated learning using serverless computing." IEEE Big Data 2021.

^[3] Qi, Shixiong, et al. "SPRIGHT: extracting the server from serverless computing! high-performance eBPF-based event-driven, shared-memory processing." ACM SIGCOMM 2022.

LIFL: Lightweight FL with an optimized serverless design

Two primary focus in LIFL

- Streamline the serverless data plane
 - Use eBPF to offload sidecar and message broker
 - Use shared memory processing to speed up hierarchical aggregation
- Control plane optimization
 - Locality-aware placement
 - Hierarchy-aware scaling
 - Aggregator reusing
 - Eager aggregation

Data Plane Optimizations in LIFL

- +1 eBPF-based stateful processing
- **eBPF:** a code snippet attached to a specific "hookpoint" in the kernel
- eBPF supports event-driven execution
 - NO cost when idle
- eBPF's stateful processing
 - In-kernel eBPF map
 - Metrics collection, Routing between aggregators

Data Plane Optimizations in LIFL

- +2 Shared memory processing for hierarchical aggregation
- Bypass the kernel
- Overhead saving by shared memory processing
 - Context switch, interrupt, copy, protocol processing, serialization/de-serialization
- Pass by reference
 Shared Memory Processing

CPU Cost (single model

+1 Locality-aware Placement

- Inter-node communication still uses kernel networking
 - Maximize shared memory processing
- Approached as a bin-packing problem
 - We choose BestFit for LIFL
 - Concentrates load onto the fewest nodes possible
 - Existing serverless design (e.g., Knative) use WorstFit
 - Spread the load across more nodes

Client Client Client SHARED MEMORY Agg. Agg. Agg. Agg. Worker Node 1 Worker Node 2

KNATIVE (WORSTFIT)

+2 Hierarchy-aware Scaling

- We use **Exponentially Weighted Moving Average** to estimate **arrival rate** of model updates on each node
- Maximize the parallelism of aggregation at each level

+3 Aggregator Reusing

- Aggregators at the higher level are often idle
 - While the leaf aggregators are working
 - Vice versa
- Aggregators in LIFL are homogeneous
 - Same simple function of summation

+4 Eager Aggregation

Key idea: aggregate the arriving updates immediately

 Leverage the overlap between the start-up delay and transfers of model updates, allowing eager aggregation to mask cold starts up until the last model update

Put it all together

Evaluating LIFL's data and control plane

Alternatives

• LIFL vs. Knative-based Serverless vs. Always-on Serverful

Workload (from FedScale^[1]):

- ResNet-18 FL clients (a total of 2,800 clients used)
- FEMNIST dataset
- Varying load

Implementation of LIFL is based on **FLAME**^[2] – an extensible framework that eases support for new FL training topologies and their workloads

Put it all together

Serverful vs. Serverless vs. LIFL

Overall outcomes:

- LIFL achieves I.6X faster time-to-accuracy than Serverful and 2.7X faster than Serverless
- LIFL has I.8X less CPU time cost than
 Serverful and 5.7X less than Serverless

Our design makes FL aggregation more efficient and faster!

For how LIFL trains a more heavyweight ResNet-152 model, please refer to our paper

Conclusion

- Dependency on cloud to scale FL training to many clients
 - · Serverless computing is an ideal fit for varying FL aggregation workload
- Existing serverless designs involve heavyweight data plane and suboptimal control plane
- LIFL incorporates the control and data plane optimizations in serverless computing
 - Truly deliver the promise of serverless
 - Make the FL aggregation more efficient and faster
- LIFL is open-sourced as part of Flame
 - Find LIFL at: https://github.com/cisco-open/flame.git
 - If you have any questions or comments, please feel free to email us (flame-github-owners@cisco.com and sqi009@ucr.edu)

Basics of extended Berkeley Packet Filter (eBPF)

Basics of extended Berkeley Packet Filter (eBPF)

Features of eBPF

- Various hook points in kernel
 - Sockets, protocol stack, network device drivers, ...
- Programmability
 - Dynamic Loading; No change to the kernel
 - Transparent to the user function
- Stateful processing offloaded to kernel
 - eBPF Map
 - Help in keeping **states**, e.g., routes, metrics

eBPF-based Event-driven Sidecar in LIFL

- In-kernel eBPF-based "sidecar"
 - Sidecar being injected at the socket interface
 - Metric Collection
 - Traffic Filtering
 - Routing
- All in the kernel
 - Avoid extra user-kernel boundary crossings
- Purely event-driven
 - **No** CPU overhead when there are no requests

eBPF-based sidecar

Container-based sidecar

Direct Function Routing in LIFL

- Serverless aggregators are **stateless**
 - Offloaded stateful processing (routing) to message broker
- Having the broker perform invocations between aggregators is unnecessary
 - Routing overhead
- Direct Function Routing in LIFL
 - Offloading routes to in-kernel eBPF map
 - Bypassing the userspace broker

Shared Memory Processing

- How to handle protocol processing?
 - LIFL Gateway: Entry-point of a local hierarchy
 - Consolidate kernel protocol processing
 - Move model updates into shared memory
- Shared memory processing between aggregators
 - "Pass-by-reference" instead of "Pass-by-value"
 - We use eBPF to deliver references
 - Socket-to-socket transfer

How to secure shared memory processing

Our Solution: Security domain

- **Trust model**: functions within a chain trust each other, functions in different chains may not
- We construct a security domain for each function chain
 - a **private** shared memory pool for each chain

Auditing the Overheads of Serverless Data Plane

Processing involved in a typical serverless function chain setup

(5) Message Broker ⇒ Function **2**

Worker Node

Data Pipeline No.	External			Within chain				Tatal
	1	2	total	3	4	(5)	total	Total
# of copies	1	2	3	4	4	4	12	15
# of ctxt switches	1	2	3	4	4	4	12	15
# of irqs	3	4	7	6	6	6	18	25
# of proto. processing	1	2	3	3	3	3	9	12
# of serialization	0	1	1	2	2	2	6	7
# of deserialization	1	1	2	2	2	2	6	8

