
Memory-Efficient LLM Training

Jiawei Zhao
Department of Computing + Mathematical Sciences

California Institute of Technology

Conversational AI Content Generation AI Agents

Reasoning Planning

Neural Networks - Foundation Models

Training of Large Language Models

Figure is from Gholami, Amir, et al. "Ai and memory wall." IEEE Micro (2024).

GPT-31
• 4 Months
• 1000 GPUs, > $10M
• Massive carbon footprint
• 175B parameters, 45TB data

Impact on Memory: Parameter Size > Activation
(optimizer states and weights require more memory than before）

Minimum Memory Requirement

Pre-Training LLaMA 7B model (BF16) from
scratch with a single batch size requires:
• Trainable Parameters: 14GB

• Adam Optimizer States: 28GB (storing
first and second estimates)

• Gradients: 14GB
• Activations: 2GB
• In total: 58GB

Weight Memory

Activation Memory

Optimizer + Gradient Memory

RTX 4090: 24GB H100: 80GB

Weight Memory

Activation Memory

Optimizer + Gradient Memory

(activation checkpointing)

(model parallelism)

(optimizer states parallelism, memory offloading,
per-layer weight updates)

Significant overhead!

Reducing Memory – System Level

Lossless methods

Work for different training scenarios

Trade time for less memory

Weight Memory

Activation Memory

Optimizer + Gradient Memory

(activation checkpointing)

(model parallelism)

(optimizer states parallelism, memory offloading,
per-layer weight updates)

1/120 x

Significant overhead!

Reducing Memory – System Level

Lossless methods

Work for different training scenarios

Trade time for less memory

Weight Memory

Activation Memory

Optimizer + Gradient Memory

Focus on:
Quantization and low-rank

Reducing Memory – Algorithm Level
Lossy methods

Better trade-off:
between memory reduction and overhead

Task-dependent:
Fine-tuning?
Pre-training / continual training?

Weight Memory

Activation Memory

Optimizer + Gradient Memory

Reducing Memory – Algorithm Level – Fine-tuning
Fine-tuning:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Focus on:
Quantization and low-rank

Lossy methods

Better trade-off:
between memory reduction and overhead

Task-dependent:
Fine-tuning?
Pre-training / continual training?

Weight Memory

Activation Memory

Reducing Memory – Algorithm Level – Fine-tuning
Fine-tuning:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Focus on:
Quantization and low-rank

Lossy methods

Better trade-off:
between memory reduction and overhead

Task-dependent:
Fine-tuning?
Pre-training / continual training?

Why they work well in fine-tuning?

“Simple” optimization landscape:
Less sensitive to approximation error

Even lead to better generalization:
Avoid catastrophic forgetting

Reducing Memory – Algorithm Level – Pre-training
How about pre-training?

Fine-tuning:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Complex optimization
landscape
Approximation may lead
to strong degradation

Pre-training:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

System-level Memory Reduction:
Activation checkpointing
Parallelism
Memory offloading
Per-layer weight updates

Reducing Memory – Algorithm Level – Pre-training
How about pre-training?

Fine-tuning:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Complex optimization
landscape
Approximation may lead
to strong degradation

Pre-training:

Low-rank:
Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Why low-rank adaptation does not work for pre-training?

Any alternative low-rank solutions? GaLore !

GaLore: Gradient Low-Rank Projection
Weight Memory

Activation Memory

Optimizer + Gradient Memory

GaLore
(8-bit + per-layer)

Reduce:
optimizer states
and
weight gradients

Achieve:
82.5% reduction

58 GB < 24 GB

C4 Dataset LLaMA-7B single RTX 4090

Pre-training - for the first time!

19.7B training tokens

rank= 1024 / 4096

Perplexity:
8-bit GaLore: 14.65
8-bit Adam: 14.61

GaLore: Gradient Low-Rank Projection
Weight Memory

Activation Memory

Optimizer + Gradient Memory

GaLore
(8-bit + per-layer)

Reduce:
optimizer states
and
weight gradients

Achieve:
82.5% reduction

58 GB < 24 GB

C4 Dataset LLaMA-7B single RTX 4090

Pre-training - for the first time!

>1k

10k 1k

Background: Low-Rank Adaptation (LoRA)

LoRA

Fine-tuning:
𝑾 = 𝑾∗ + 𝑨𝑩
𝑾∗ ∈ 	ℝ𝒅	×	𝒅 ∶ fixed pre-trained weights
𝑨	 ∈ 	ℝ𝒅	×	𝒓 𝑩 ∈ 	ℝ𝒓	×	𝒅: learnable low-rank adaptors

Pre-training:
𝑾 = 𝑾𝟎 + 𝑨𝑩
𝑾𝟎 	 ∈ 	ℝ𝒅	×	𝒅 ∶ fixed initial weights
𝑨	 ∈ 	ℝ𝒅	×	𝒓 𝑩 ∈ 	ℝ𝒓	×	𝒅: learnable low-rank adaptors
 (much larger rank 𝒓)

Large	degradation!

Why does LoRA not work well for pre-training?

𝑾 =𝑾𝟎 + 𝑨𝑩

low-rank subspace 𝑨𝑩

sub-optimal solution

optimal solution

Complex optimization landscape
(initialization is far from the optimal solution)

Limited expressivity
(optimal solution is outside the low-rank subspace)

initialization

What we need:
A strategy that allows full-parameter training while being memory-efficient

Don’t restrict weights in low-rank subspace!

Shift focus: low-rank weights -> low-rank gradients

Weight	gradients	are	low-rank

𝑮𝒕 ∈ 	ℝ𝒅	×	𝒅	is	the	gradient	of	𝑾	at	step	𝒕	
𝒓𝒂𝒏𝒌 𝑮𝒕 ≪ 𝒅

Widely	used	in	practice:	
low-rank	gradient	compression	
(PowerSGD)

visualize 𝑮𝒕 in 2D

𝑮𝟎

Consecutive gradients are similar

𝑮𝟎, 𝑮𝟏, 𝑮𝟐, …	are	not	only	low-rank,
but	similar	to	each	other:	

𝑮𝟎 ≈ 𝑮𝟏 ≈ 𝑮𝟐 ≈ ⋯

visualize 𝑮𝒕 in 2D

𝑮𝟎
𝑮𝟏

𝑮𝟐

Similarity between gradients 𝑮𝒊	𝒂𝒏𝒅	𝑮𝒋	
(for	any	iterations	𝒊	𝒂𝒏𝒅	𝒋)

Consecutive gradients can be represented in
the same subspace 𝑷

visualize 𝑮𝒕 in 2D

We	can	find	a	subspace	𝑷,	such	that:
𝑷𝑷𝑻 𝑮𝟎 ≈ 𝑮𝟎
𝑷𝑷𝑻 𝑮𝟏 ≈ 𝑮𝟏
𝑷𝑷𝑻 𝑮𝟐 ≈ 𝑮𝟐

…

𝑷

Consecutive gradients can be represented in
the same subspace 𝑷

visualize 𝑮𝒕 in 2D

We	can	find	a	subspace	𝑷,	such	that:
𝑷𝑷𝑻 𝑮𝟎 ≈ 𝑮𝟎
𝑷𝑷𝑻 𝑮𝟏 ≈ 𝑮𝟏
𝑷𝑷𝑻 𝑮𝟐 ≈ 𝑮𝟐

…
Project	gradient	at	iteration	t:
	 𝑹𝒕 = 𝑷𝑻 𝑮𝒕 ,	X𝑮𝒕 = 𝑷𝑷𝑻 𝑮𝒕

𝑷

X𝑮𝒕

𝑮𝒕

2D case:
𝑷𝑻: 𝟐𝐃	 → 𝟏𝐃	

dim = d:
𝑷𝑻: 𝐝	 → 𝐫,𝐰𝐡𝐞𝐫𝐞	𝐫 ≪ 𝐝	

𝑹𝒕 is a scalar

𝑹𝒕 ∈ ℝ𝒓	×	𝒅 𝑹𝒕𝒓 𝒅

Why projected gradient is related to memory reduction?
Project	gradient	at	iteration	t:
	 𝑹𝒕 = 	𝑷 𝑮𝒕 ,	X𝑮𝒕 = 𝑷𝑻𝑷 𝑮𝒕
Low-rank	gradient	𝑹𝒕	provides	major	information	of	gradient	𝑮𝒕
For	optimizers	that	require	to	store	optimizer	states,	such	as	Adam:

Adam(𝑹𝒕):		low-rank	𝑹𝒕	->	low-rank	optimizer	states	𝑴𝒕,𝑽𝒕

Adam(𝑮𝒕):			full-rank	𝑮𝒕	->	full-rank	optimizer	states	𝑴𝒕, 𝑽𝒕

𝑹𝒕𝒓 𝒅

𝑴𝒕 𝑽𝒕

𝑴𝒕 𝑽𝒕

Reduce	optimizer	memory

Preserve	true	gradient	statistics	in	optimizers

GaLore: Gradient Low-Rank Projection

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

𝑮𝒕

𝑹𝒕 𝑷𝒕𝑻 𝑮𝒕

Intermediate
Stored

𝑾𝒕
For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

Adam	keeps	

GaLore: Gradient Low-Rank Projection

𝑮𝒕

𝑹𝒕 𝑷𝒕𝑻 𝑮𝒕

X𝑹𝒕 𝑹𝒕 𝑴𝒕 𝑽𝒕

Intermediate
Stored

𝑾𝒕

X𝑮𝒕 𝑷𝒕 X𝑹𝒕

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

Adam	keeps	

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑮𝒕

𝑹𝒕 𝑷𝒕𝑻 𝑮𝒕

X𝑹𝒕 𝑹𝒕 𝑴𝒕 𝑽𝒕

Intermediate
Stored

𝑾𝒕

X𝑮𝒕 𝑷𝒕 X𝑹𝒕

𝑾𝒕'𝟏 𝑾𝒕 + X𝑮𝒕

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

Need	to	store:

𝑾𝒕 𝑴𝒕𝑷𝒕 2x

𝒅𝟐 𝒅𝒓 𝟐𝒅𝒓

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

	

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕=0
Initialize	𝑾𝟎

	

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕=0
Initialize	𝑾𝟎
Initialize	𝑷𝟎
(first	subspace)
	

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕=0
Initialize	𝑾𝟎
Initialize	𝑷𝟎
(first	subspace)
	
𝒕 ∈ 𝟏, 𝐓𝟏 	
Learning	through	
\𝑮𝒕

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕=0
Initialize	𝑾𝟎
Initialize	𝑷𝟎
(first	subspace)
	
𝒕 ∈ 𝟏, 𝐓𝟏 	
Learning	through	
\𝑮𝒕

𝑾𝟎 + ∆𝑾𝑻𝟏
!𝑮𝒕𝟏

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕= 𝐓𝟏 + 𝟏
Compute	𝑷𝑻𝟏
(change	subspace)
	

!𝑮𝒕𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕= 𝐓𝟏 + 𝟏
Compute	𝑷𝑻𝟏
(change	subspace)
	
𝒕 ∈ 𝐓𝟏 + 𝟏, 𝐓𝟐 	
𝑷𝒕 = 𝑷𝑻𝟏 	
Learning	through	
\𝑮𝒕

!𝑮𝒕𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏 + ∆𝑾𝑻𝟐

!𝑮𝒕𝟐

For	any	weight	matrice	𝑾𝒕	at	iteration	𝒕:	

Given	its	gradient	matrix	𝑮𝒕

𝑹𝒕 	← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕(𝑮𝒕)

X𝑹𝒕		← 𝒖𝒑𝒅𝒂𝒕𝒆(𝑹𝒕)

X𝑮𝒕 ← 𝒑𝒓𝒐𝒋𝒆𝒄𝒕_𝒃𝒂𝒄𝒌(X𝑹𝒕)

𝑾𝒕P𝟏 ← 𝑾𝒕 + X𝑮𝒕

GaLore: Gradient Low-Rank Projection

𝑾𝟎

visualize 𝑮𝒕 in 3D

For	every	T	iterations:
								Compute	and	store	𝑷𝒕= SVD 𝑮𝒕

	𝑷𝒕	is	the	projection	matrix.	

𝒕= 𝐓𝟏 + 𝟏
Compute	𝑷𝑻𝟏
(change	subspace)
	
𝒕 ∈ 𝐓𝟏 + 𝟏, 𝐓𝟐 	
𝑷𝒕 = 𝑷𝑻𝟏 	
Learning	through	
\𝑮𝒕

Continue	until
convergence

!𝑮𝒕𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏 + ∆𝑾𝑻𝟐

!𝑮𝒕𝟐

GaLore: Memory Usage

GaLore

𝑾𝒕 𝑴𝒕𝑷𝒕 2x

𝒅𝟐 𝒅𝒓 𝟐𝒅𝒓

More	memory	efficient	than	LoRA	!

Especially	for	pre-training,	where	𝒓 is	large	
(1/4	full-rank)

	

Full-Rank

𝑾𝒕 𝑴𝒕2x

𝒅𝟐 𝒅𝟐

LoRA

𝑾𝒕 𝑩𝒕𝑨𝒕3x

𝒅𝟐 𝟐𝒅𝒓 + 𝟒𝒅𝒓

Memory Usage Weight (𝑊) Optim States
(𝑀! , 𝑉!)

Projection (𝑃) Total

Full-rank 𝑑" 2𝑑" 0 3𝑑"

LoRA 𝑑" + 2𝑑𝑟 4𝑑𝑟 0 𝑚𝑛 + 6𝑑𝑟
GaLore 𝑑" 2𝑑𝑟 𝑑𝑟 𝑚𝑛 + 3𝑑𝑟

≪ 𝑑𝑟,	low-bit	projection
direction	does	not	need	to	be	precise

Combing with existing techniques

1. 8-bit	Optimizer
Store	optimizer	states	in	8-bit

2.	Per-Layer	Weight	Update
Avoid	memory	for	storing	full-model	weight	gradients

Forward

Backward

Weight Update Receive	gradient	𝑮𝒍	

Update	weight	 𝑾𝒍	by	𝑮𝒍	
Discard	gradient	𝑮𝒍	

GaLore: Benchmark – Pre-Training on C4

GaLore	and	LoRA:	
rank	=	1/4	full-rank

Significantly	outperform	
LoRA!

Match	full-rank	baseline

* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

Throughput Comparison
(Third-Party Evaluation by LLaMA Factory)

Memory Comparison

GaLore: Benchmark – Efficiency

LLaMA-7B single RTX 4090

galore-torch Github: https://github.com/jiaweizzhao/GaLore

from galore_torch import GaLoreAdamW, GaLoreAdamW8bit
define param groups as galore_params and non_galore_params

param_groups = [{'params': non_galore_params},
{'params': galore_params, 'rank': 128, 'update_proj_gap': 200,
'scale': 0.25, 'proj_type': 'std’}]

optimizer = GaLoreAdamW(param_groups, lr=0.01)

Plug it in!

> 1k

More	integrations	are	underway!

galore-torch

https://github.com/jiaweizzhao/GaLore

GaLore: Future Works

• GaLore-Distributed:
• A single RTX 4090 takes 3 months to fully pre-train a LLaMA 7B model on C4
• Multiple 4090s are needed
• Low-bandwidth elastic training

• Better GaLore
• Improve throughput efficiency
• Further reduce memory overhead

Memory-Efficient Training: Future Direction

• Focus more on challenging tasks:
• Difficult fine-tuning tasks (e.g., reasoning tasks)
• Continual training
• Pre-training

• Consider optimization and memory limitations jointly
• Studying what are “redundancy” inside training dynamic

• Memory reduction for weight and activation

Thank you!

