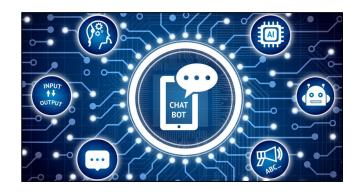
Memory-Efficient LLM Training

Jiawei Zhao

Department of Computing + Mathematical Sciences

California Institute of Technology

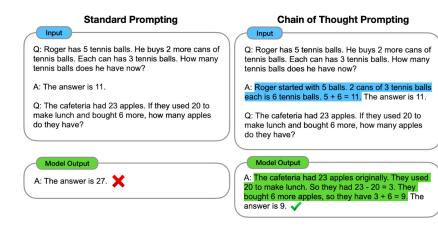
Neural Networks - Foundation Models



Conversational AI

Content Generation

AI Agents



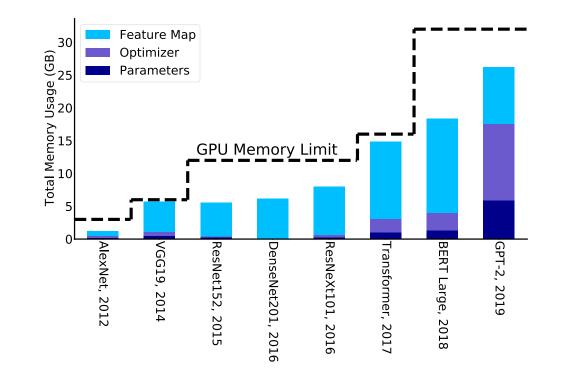
Planning

Reasoning

Training of Large Language Models

GPT-3¹

- 4 Months
- 1000 GPUs, > \$10M
- Massive carbon footprint
- 175B parameters, 45TB data



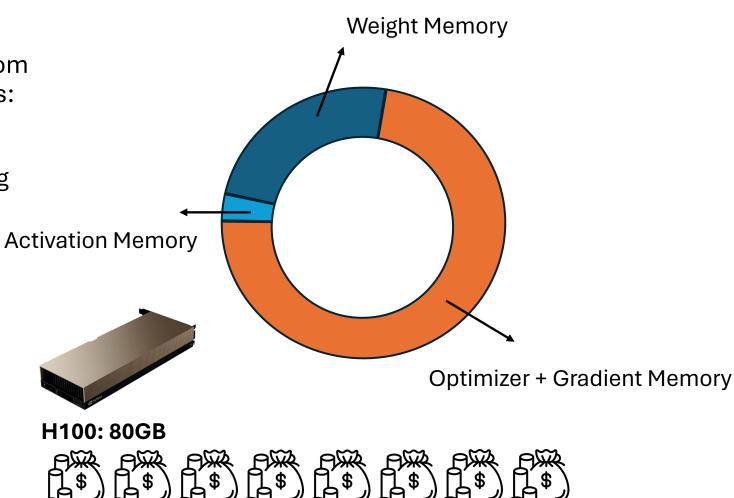
Impact on Memory: Parameter Size > Activation (optimizer states and weights require more memory than before)

Minimum Memory Requirement

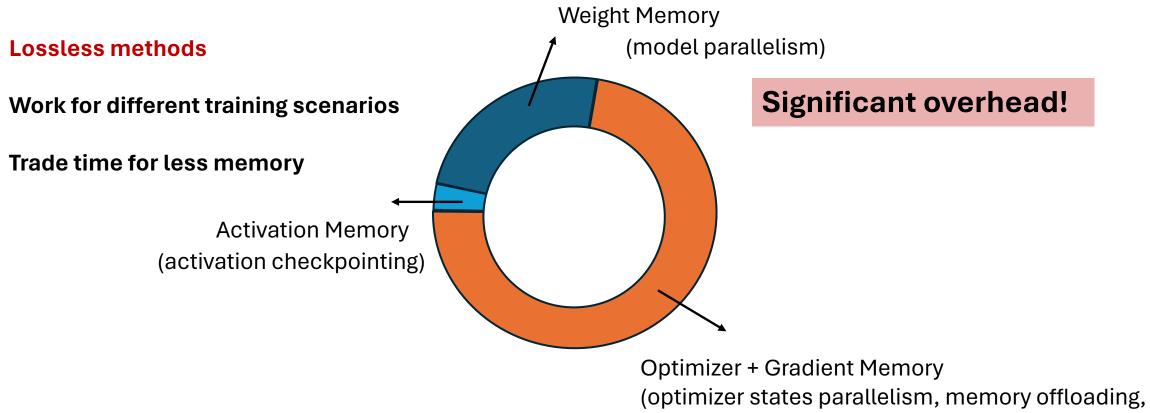
Pre-Training LLaMA 7B model (BF16) from scratch with a single batch size requires:

- Trainable Parameters: 14GB
- Adam Optimizer States: 28GB (storing first and second estimates)
- Gradients: 14GB
- Activations: 2GB
- In total: 58GB

RTX 4090: 24GB

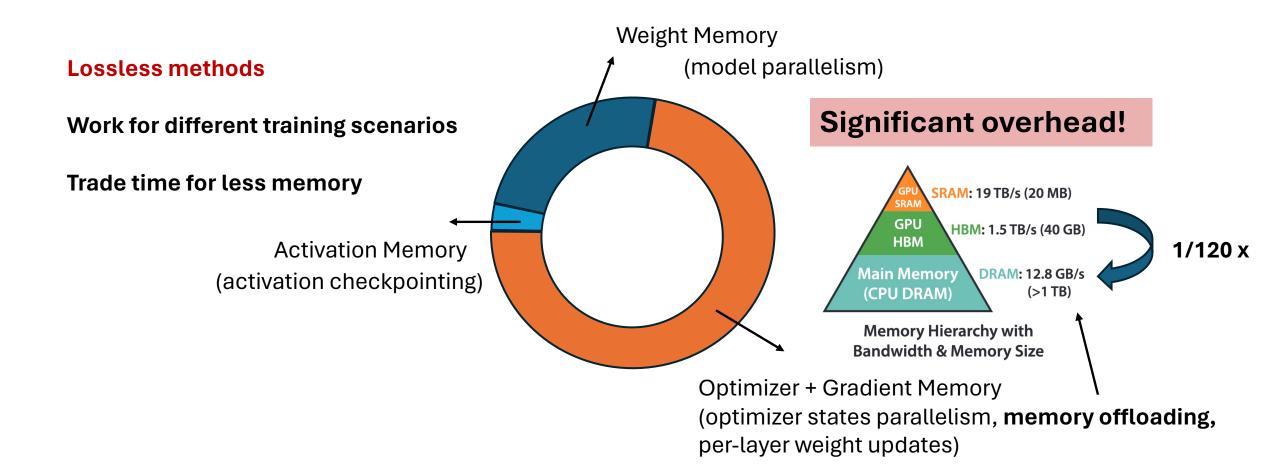


Reducing Memory – System Level



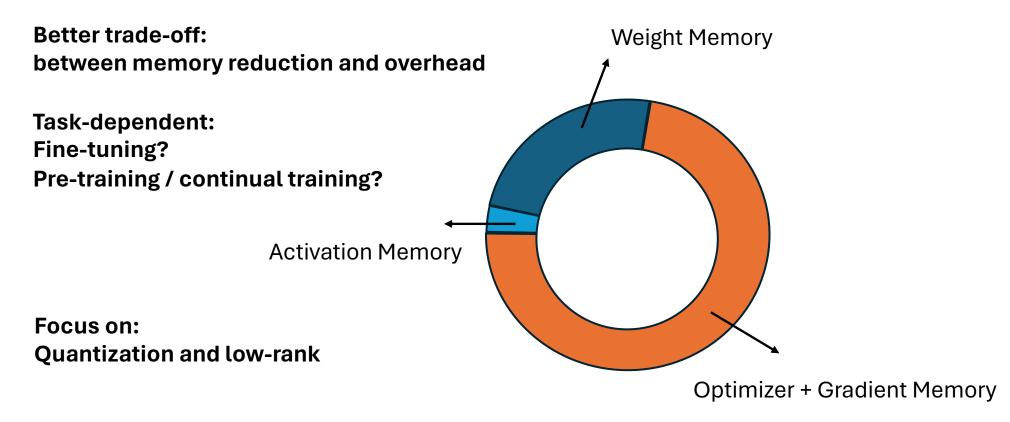
per-layer weight updates)

Reducing Memory – System Level



Reducing Memory – Algorithm Level

Lossy methods



Reducing Memory – Algorithm Level – Fine-tuning

Lossy methods



Fine-tuning:

Low-rank: Low-rank Adaptation (LoRA)

Quantization: Low-precision Training 8-bit optimizer

Low-rank + Quantization:

Reducing Memory – Algorithm Level – Fine-tuning

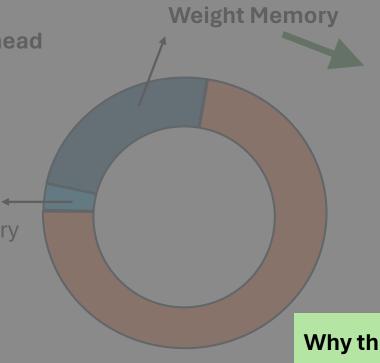
Lossy methods

Better trade-off: between memory reduction and overhead

Task-dependent: Fine-tuning? Pre-training / continual training?

Activation Memory

Focus on: Quantization and low-rank



Fine-tuning:

Low-rank: Low-rank Adaptation (LoRA)

Quantization: Low-precision Training 8-bit optimizer

Low-rank + Quantization: QLoRA

Why they work well in fine-tuning?

"Simple" optimization landscape: Less sensitive to approximation error

Even lead to better generalization: Avoid catastrophic forgetting

Reducing Memory – Algorithm Level – Pre-training

X

How about pre-training?

Complex optimization landscape

Approximation may lead to strong degradation

Pre-training:

Low-rank: Low-rank Adaptation (LoRA)

Quantization: Low-precision Training 8-bit optimizer

Low-rank + Quantization: QLoRA

Fine-tuning:

Low-rank: Low-rank Adaptation (LoRA)

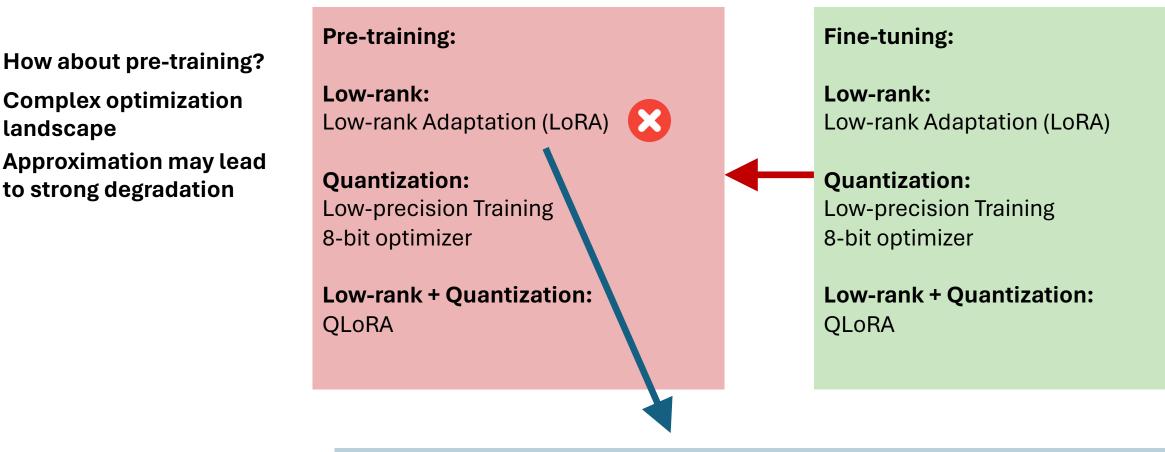
Quantization: Low-precision Training 8-bit optimizer

Low-rank + Quantization: QLoRA

System-level Memory Reduction: Activation checkpointing Parallelism Memory offloading Per-layer weight updates

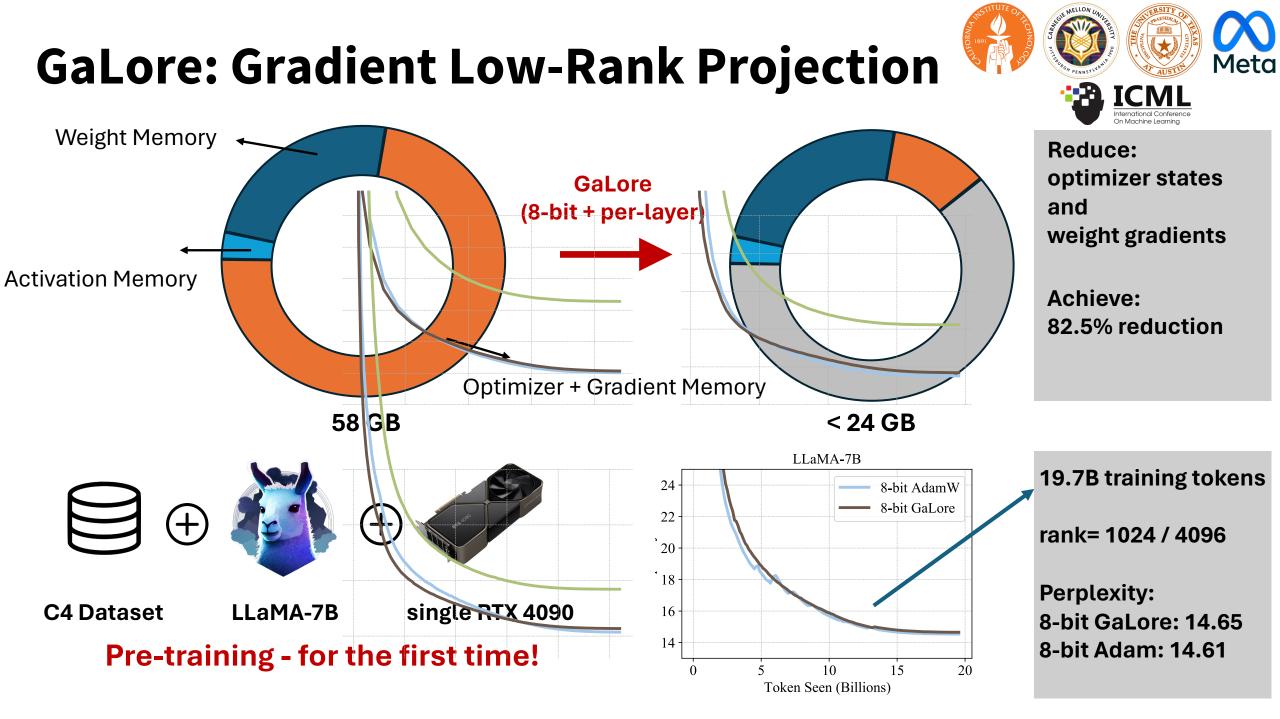
Reducing Memory – Algorithm Level – Pre-training

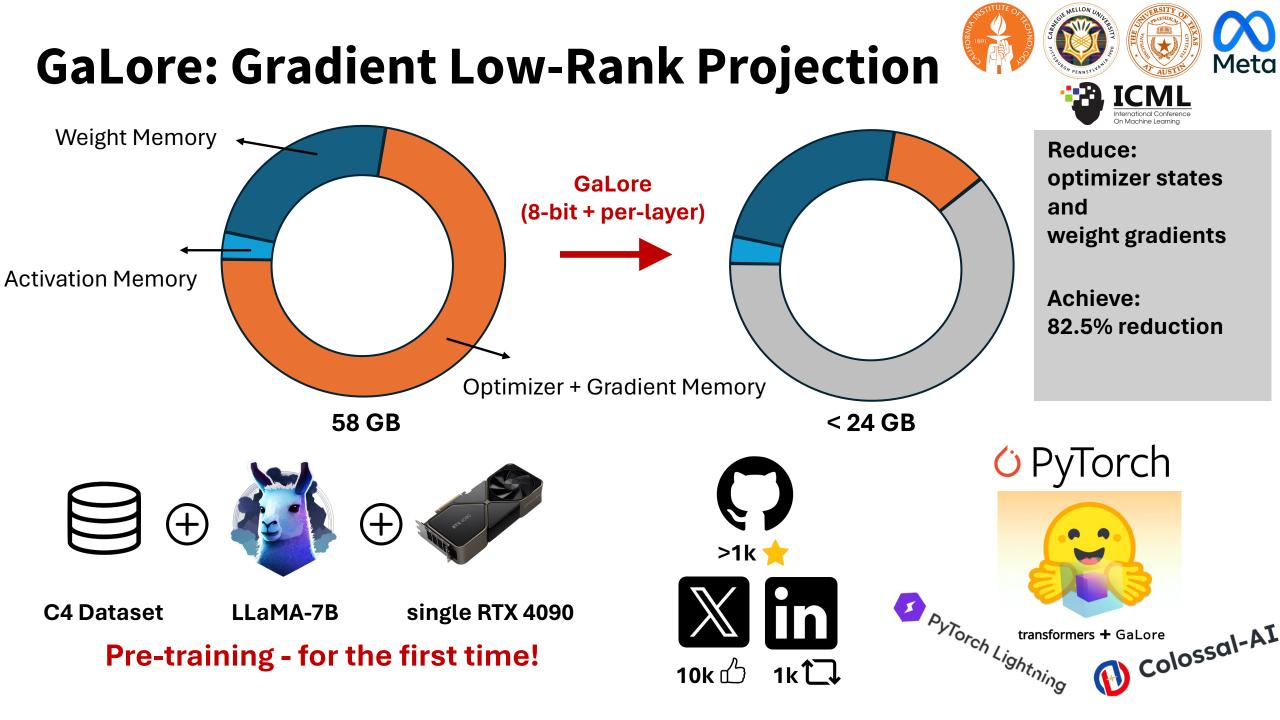
landscape



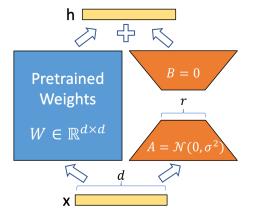
Why low-rank adaptation does not work for pre-training?

Any alternative low-rank solutions? GaLore!





Background: Low-Rank Adaptation (LoRA)



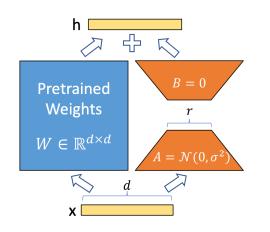
Fine-tuning: $W = W^* + AB$ $W^* \in \mathbb{R}^{d \times d}$: fixed pre-trained weights $A \in \mathbb{R}^{d \times r} B \in \mathbb{R}^{r \times d}$: learnable low-rank adaptors

LoRA

Pre-training: $W = W_0 + AB$ $W_0 \in \mathbb{R}^{d \times d}$: fixed initial weights $A \in \mathbb{R}^{d \times r} B \in \mathbb{R}^{r \times d}$: learnable low-rank adaptors (much larger rank r)

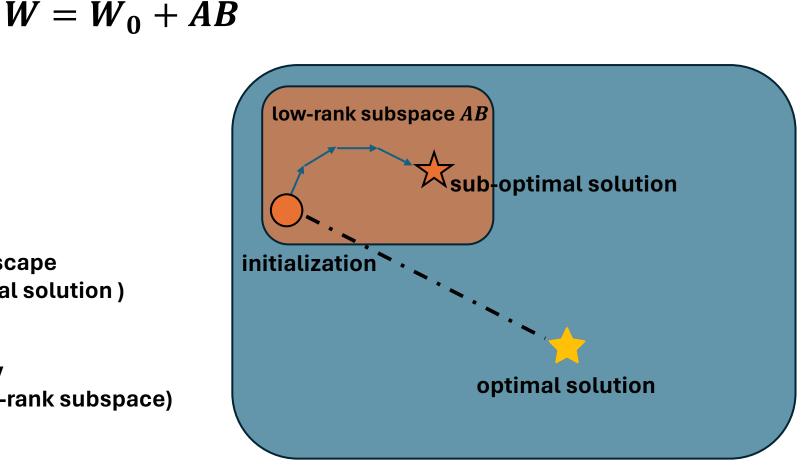
Large degradation!

Why does LoRA not work well for pre-training?



Complex optimization landscape (initialization is far from the optimal solution)

Limited expressivity (optimal solution is outside the low-rank subspace)



Don't restrict weights in low-rank subspace!

What we need:

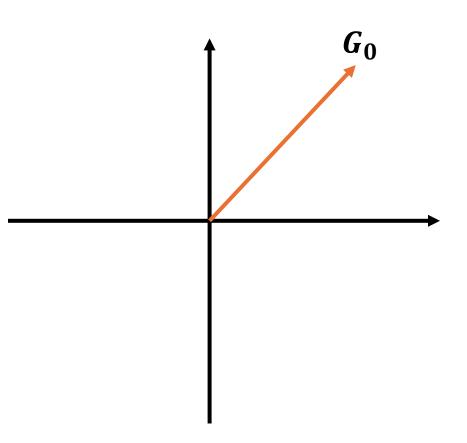
A strategy that allows full-parameter training while being memory-efficient

Shift focus: low-rank weights -> low-rank gradients

Weight gradients are low-rank

 $G_t \in \mathbb{R}^{d \times d}$ is the gradient of W at step t $rank(G_t) \ll d$

Widely used in practice: low-rank gradient compression (PowerSGD)



visualize G_t in 2D

Consecutive gradients are similar

 G_0, G_1, G_2, \dots are not only low-rank, but similar to each other:

 $G_0 \approx G_1 \approx G_2 \approx \cdots$



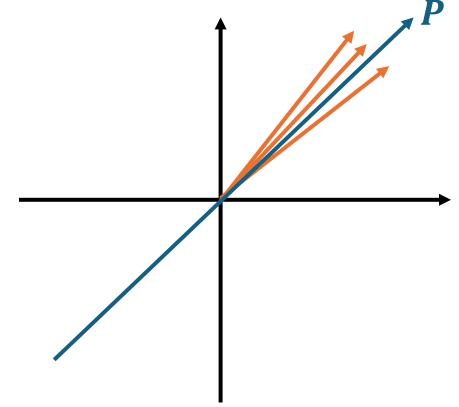
*G*⁶ *G*¹

Consecutive gradients can be represented in the same subspace **P**

We can find a subspace **P**, such that:

 $PP^{T}(G_{0}) \approx G_{0}$ $PP^{T}(G_{1}) \approx G_{1}$ $PP^{T}(G_{2}) \approx G_{2}$

. . .



visualize G_t in 2D

Consecutive gradients can be represented in the same subspace **P**

We can find a subspace **P**, such that:

 $PP^{T}(G_{0}) \approx G_{0}$ $PP^{T}(G_{1}) \approx G_{1}$ $PP^{T}(G_{2}) \approx G_{2}$

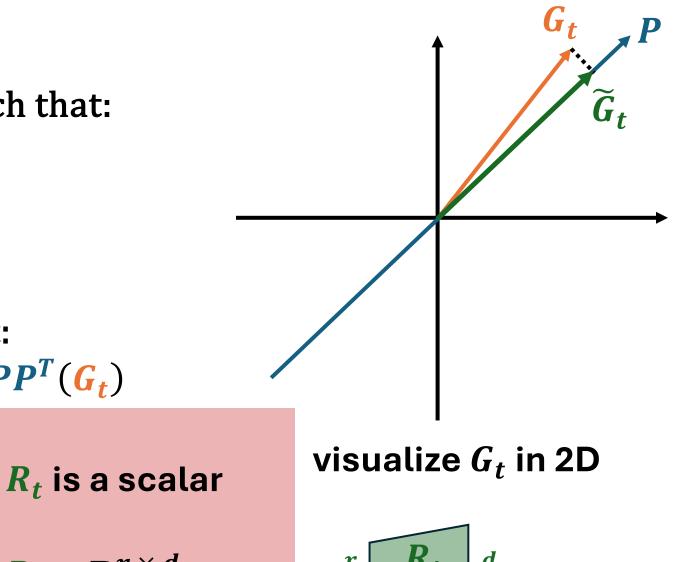
Project gradient at iteration t:

$$R_t = P^T(G_t), \widetilde{G}_t = PP^T(G_t)$$

2D case:

 $P^T: 2D \rightarrow 1D$

dim = d: $P^T: \mathbf{d} \rightarrow \mathbf{r}, \text{ where } \mathbf{r} \ll \mathbf{d} \quad R_t \in \mathbb{R}^{r \times d}$



Why projected gradient is related to memory reduction?

Project gradient at iteration t: $R_t = P(G_t), \tilde{G}_t = P^T P(G_t)$ $r R_t d$

Low-rank gradient R_t provides major information of gradient G_t For optimizers that require to store optimizer states, such as Adam:

Adam (R_t) : low-rank $R_t \rightarrow$ low-rank optimizer states $M_t V_t$

Adam(G_t): full-rank $G_t \rightarrow$ full-rank optimizer states M_t, V_t

Reduce optimizer memory

Preserve true gradient statistics in optimizers

For any weight matrice W_t at iteration t:

Given its gradient matrix G_t

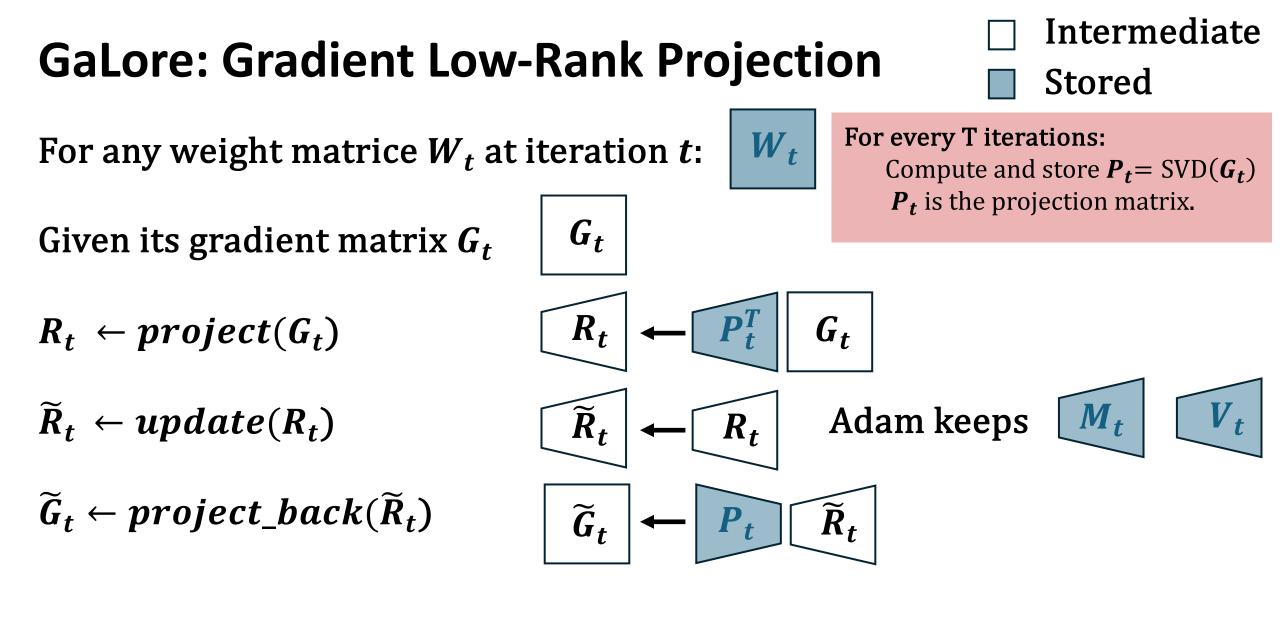
 $R_t \leftarrow project(G_t)$

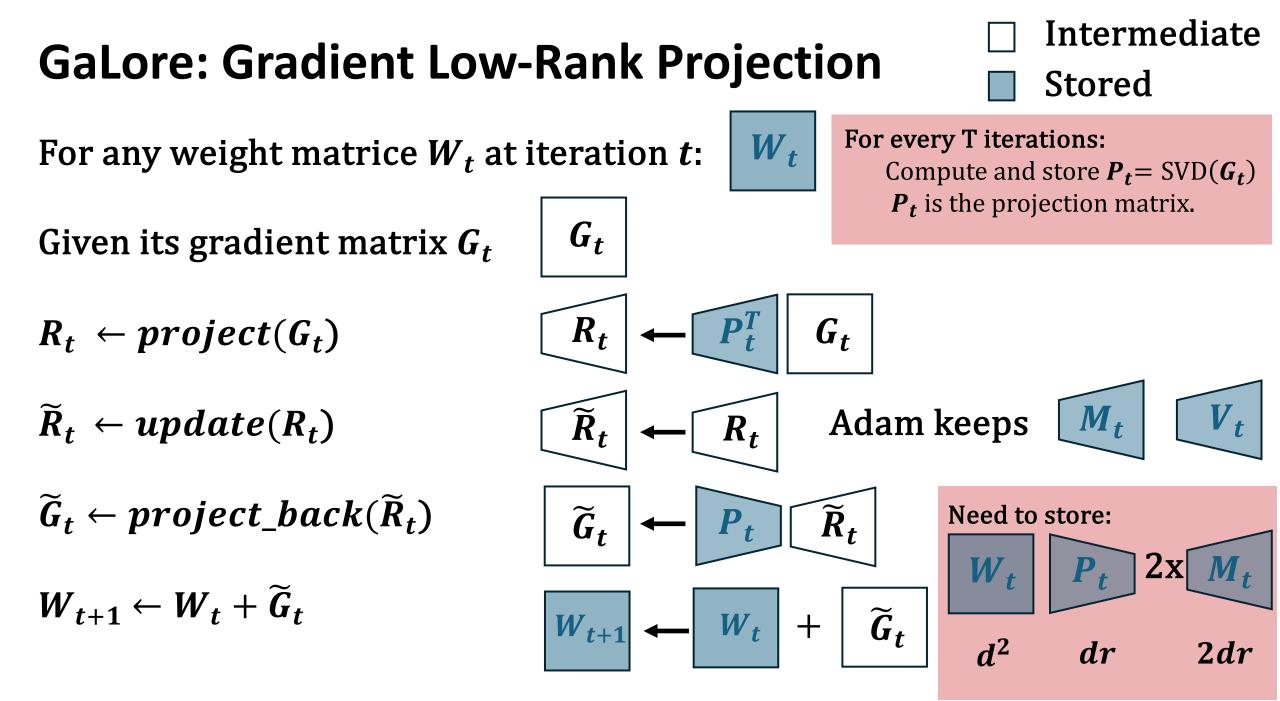
 G_t R_t G_t

 W_t

IntermediateStored

For every T iterations: Compute and store $P_t = \text{SVD}(G_t)$ P_t is the projection matrix.





For any weight matrice W_t at iteration t:

Given its gradient matrix G_t

 $R_t \leftarrow project(G_t)$

 $\widetilde{R}_t \leftarrow update(R_t)$

 $\widetilde{G}_t \leftarrow project_back(\widetilde{R}_t)$

 $W_{t+1} \leftarrow W_t + \widetilde{G}_t$

For every T iterations: Compute and store $P_t = \text{SVD}(G_t)$ P_t is the projection matrix.

For any weight matrice W_t at iteration t:

Given its gradient matrix G_t

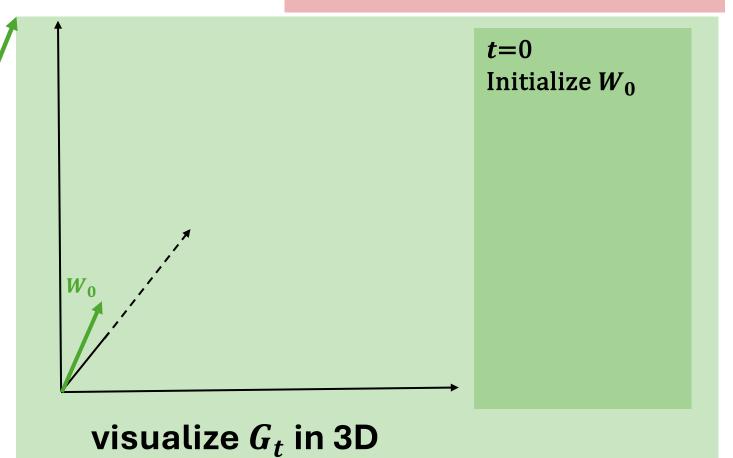
 $R_t \leftarrow project(G_t)$

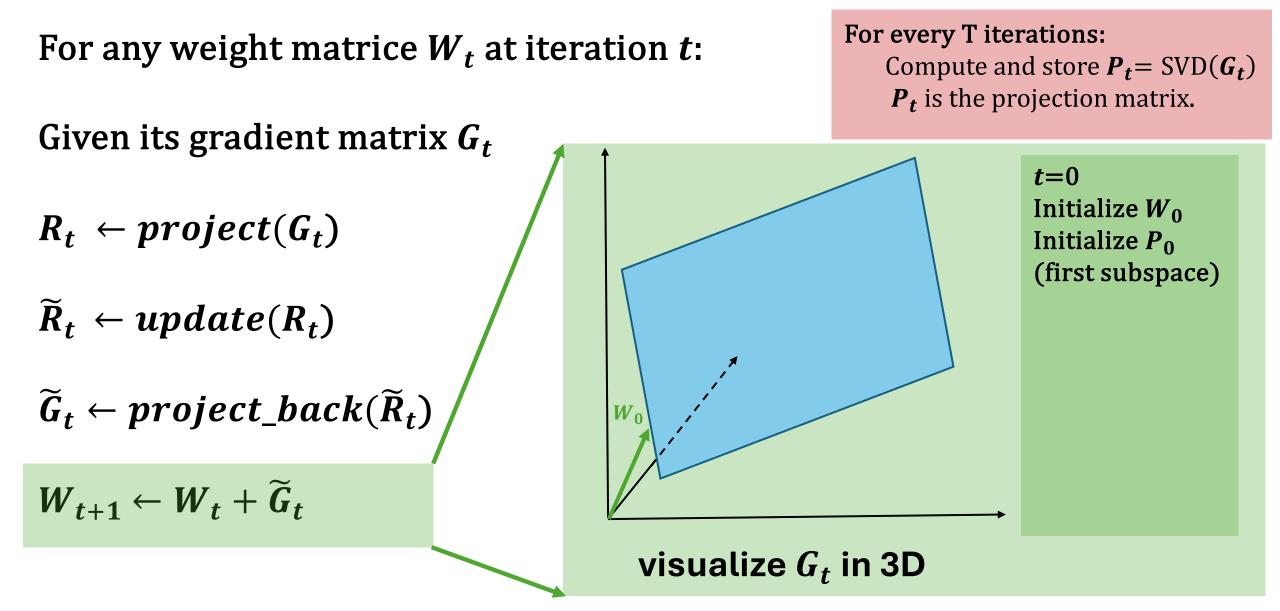
 $\widetilde{R}_t \leftarrow update(R_t)$

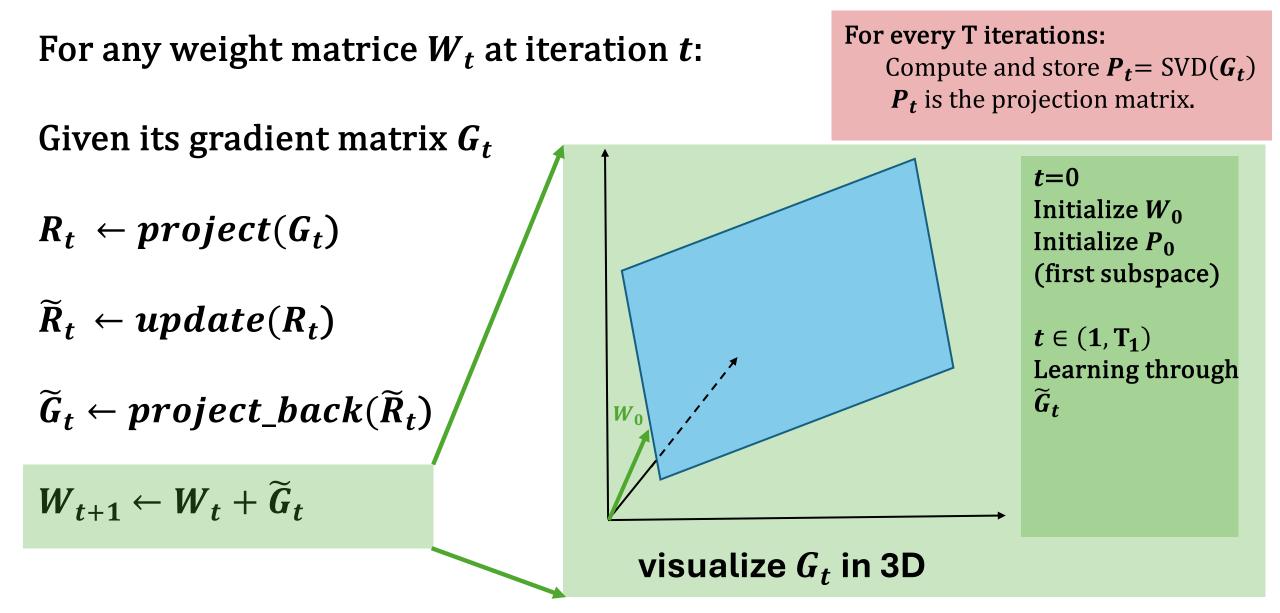
 $\widetilde{G}_t \leftarrow project_back(\widetilde{R}_t)$

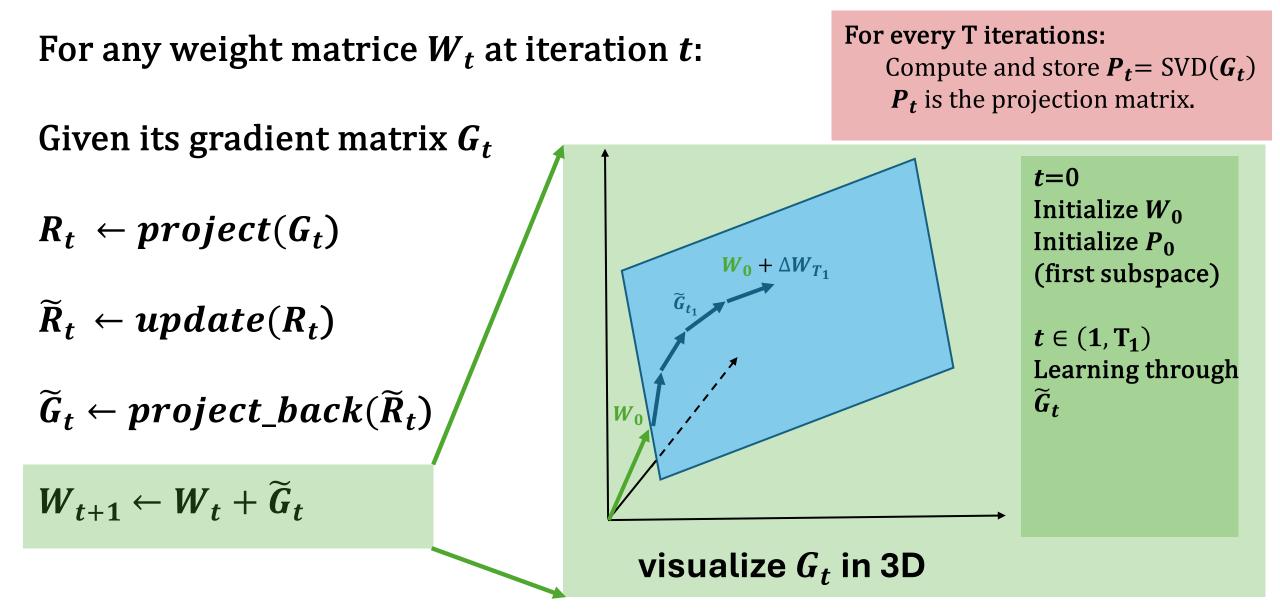
 $W_{t+1} \leftarrow W_t + \widetilde{G}_t$

For every T iterations: Compute and store $P_t = SVD(G_t)$ P_t is the projection matrix.









For every T iterations: For any weight matrice W_t at iteration t: Compute and store $P_t = SVD(G_t)$ *P*_{*t*} is the projection matrix. Given its gradient matrix G_t $t = T_1 + 1$ Compute P_{T_1} $R_t \leftarrow project(G_t)$ (change subspace) $W_0 + \Delta W_{T_1}$ $\widetilde{R}_t \leftarrow update(R_t)$ $\widetilde{G}_t \leftarrow project_back(\widetilde{R}_t)$ W $W_{t+1} \leftarrow W_t + \widetilde{G}_t$ visualize G_t in 3D

For any weight matrice W_t at iteration t:

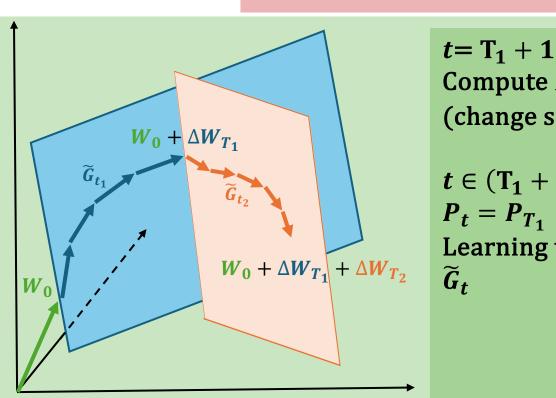
Given its gradient matrix G_t

 $R_t \leftarrow project(G_t)$

 $\tilde{R}_t \leftarrow update(R_t)$

 $\widetilde{G}_t \leftarrow project_back(\widetilde{R}_t)$

 $W_{t+1} \leftarrow W_t + \widetilde{G}_t$



visualize G_t in 3D

For every T iterations: Compute and store $P_t = SVD(G_t)$ *P*_{*t*} is the projection matrix.

> Compute P_{T_1} (change subspace) $t \in (T_1 + 1, T_2)$ $P_t = P_{T_1}$ Learning through

For any weight matrice W_t at iteration t:

Given its gradient matrix G_t

 $R_t \leftarrow project(G_t)$

 $\tilde{R}_t \leftarrow update(R_t)$

 $\widetilde{G}_t \leftarrow project_back(\widetilde{R}_t)$

 $W_{t+1} \leftarrow W_t + \widetilde{G}_t$

 $t = T_1 + 1$ $W_0 + \Delta W_{T_1}$ $W_0 + \Delta W_{T_1} + \Delta W_{T_2}$ \widetilde{G}_{t} W

visualize G_t in 3D

For every T iterations: Compute and store $P_t = SVD(G_t)$ *P*_{*t*} is the projection matrix.

> Compute P_{T_1} (change subspace) $t \in (T_1 + 1, T_2)$ $P_t = P_{T_1}$ Learning through

> > **Continue until** convergence

GaLore: Memory Usage

Memory Usage

Full-rank

LoRA

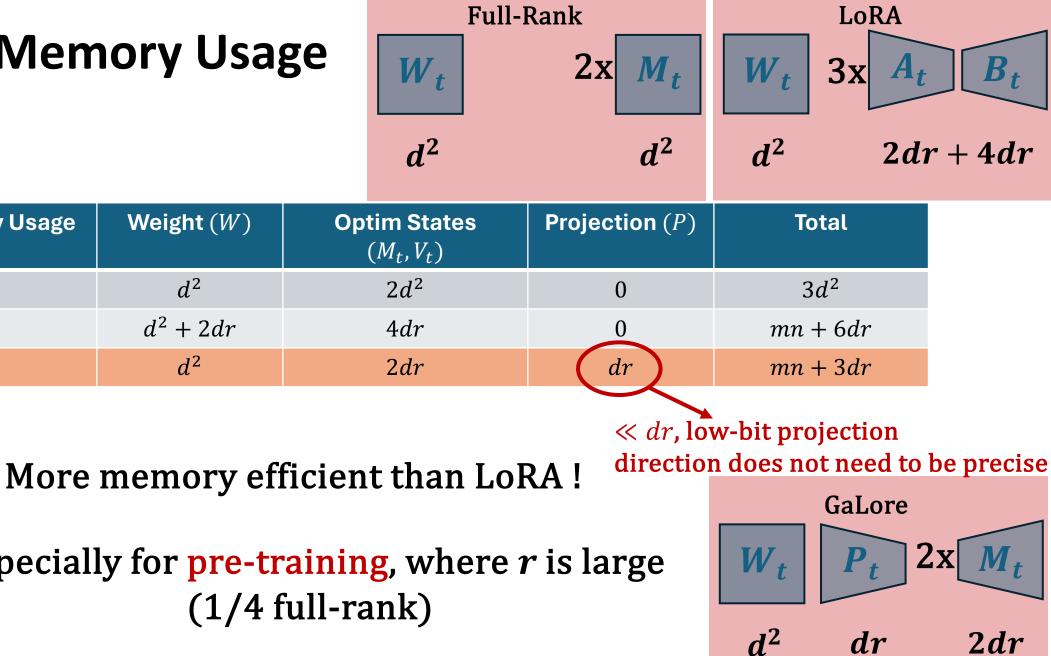
GaLore

Weight (W)

 d^2

 $d^{2} + 2dr$

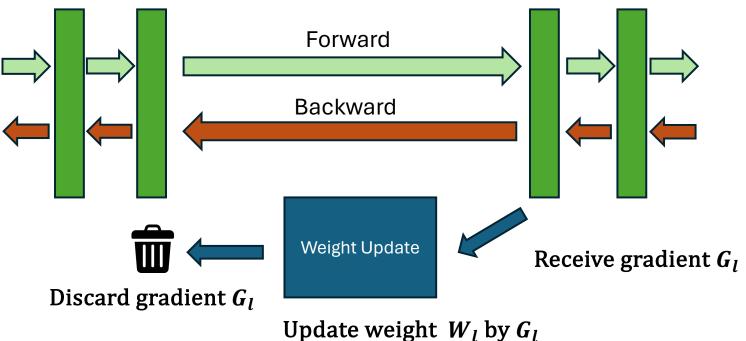
 d^2



Especially for pre-training, where r is large (1/4 full-rank)

Combing with existing techniques

- 8-bit Optimizer
 Store optimizer states in 8-bit
- 2. Per-Layer Weight Update Avoid memory for storing full-model weight gradients

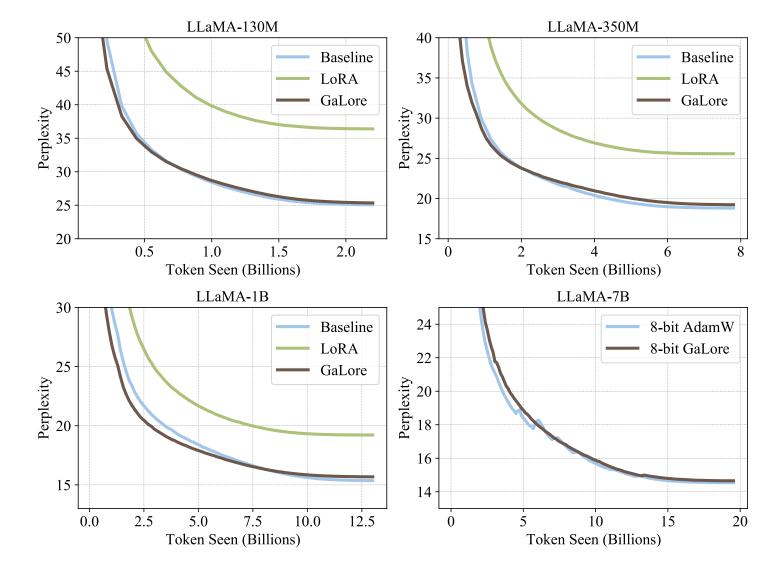


GaLore: Benchmark – Pre-Training on C4

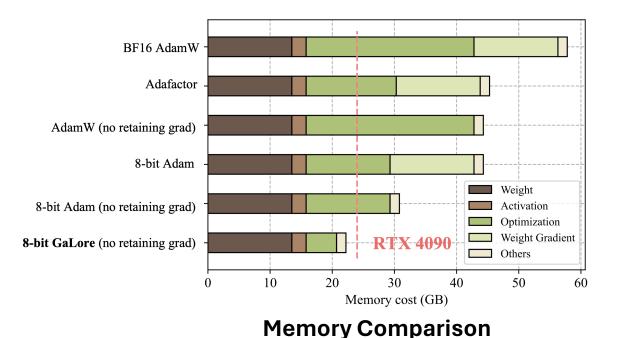
GaLore and LoRA: rank = 1/4 full-rank

Significantly outperform LoRA!

Match full-rank baseline



GaLore: Benchmark – Efficiency



	Rank	Retain grad	Memory	Token/s
8-bit AdamW		Yes	40GB	1434
8-bit GaLore	16	Yes	28GB	1532
8-bit GaLore	128	Yes	29GB	1532
16-bit GaLore	128	Yes	30GB	1615
16-bit GaLore	128	No	18GB	1587
8-bit GaLore	1024	Yes	36GB	1238

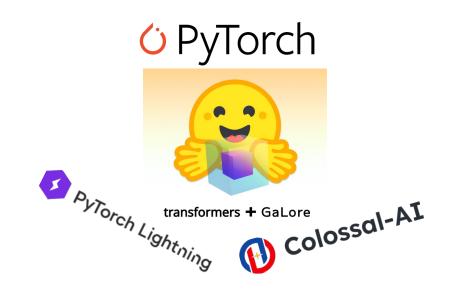
* SVD takes around 10min for 7B model, but runs every T=500-1000 steps.

Throughput Comparison (Third-Party Evaluation by LLaMA Factory)

LLaMA-7B

single RTX 4090

galore-torch Github: <u>https://github.com/jiaweizzhao/GaLore</u>



More integrations are underway!

GaLore: Future Works

• GaLore-Distributed:

- A single RTX 4090 takes **3 months** to fully pre-train a LLaMA 7B model on C4
- Multiple 4090s are needed
- Low-bandwidth elastic training

Better GaLore

- Improve throughput efficiency
- Further reduce memory overhead

Memory-Efficient Training: Future Direction

- Focus more on challenging tasks:
 - Difficult fine-tuning tasks (e.g., reasoning tasks)
 - Continual training
 - Pre-training
- Consider optimization and memory limitations jointly
 - Studying what are "redundancy" inside training dynamic
- Memory reduction for weight and activation

Thank you!