Memory-Efficient LLM Training

Jiawei Zhao
Department of Computing + Mathematical Sciences

California Institute of Technology

Neural Networks - Foundation Models

A\ OuUTPUy

Conversational Al

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

Model Output
A: The answer is 27. x)

Chain of Thought Prompting

Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. The!
bought 6 more apples, so they have 3 + 6 =9. The

\answer is9.)

Reasoning

Joining for coffee at a cafe

Finishinga
morning routine

BTN,

MY Y'Y J— %:;,U &8 valaa

Al Agents

CONCEPT T .

_/,
le\N =

\ L
& . /
y ok @ Yo'\ ”

Planning

Training of Large Language Models

B Feature Map mm_——_————
B Optimizer
Hl Parameters

w
o

N
Ul

N
(=]
—-— -

GPT-31

* 4 Months

* 1000 GPUs, > $S10M -
* Massive carbon footprint [- !
e 175B parameters, 45TB data

r L J
GPU Memory Limit

=
ul

Total Memory Usage (GB)
=
o

Ul

o

Z10Z ‘1I3NX3|Y

¥10Z ‘6199

GTOZ ‘ZSTISNS®
9102 'IoaaNasuea
9T0Z ‘TOTIXONS3Y
/T0Z ‘JowJojsuel]
810¢ ‘©bJe7 143g
610Z ‘'2-1dD

Impact on Memory: Parameter Size > Activation
(optimizer states and weights require more memory than before)

Figure is from Gholami, Amir, et al. "Ai and memory wall." IEEE Micro (2024).

Minimum Memory Requirement

Weight Memory

Pre-Training LLaMA 7B model (BF16) from
scratch with a single batch size requires:

Trainable Parameters: 14GB

Adam Optimizer States: 28GB (storing
first and second estimates)

Gradients: 14GB Activation Memory
Activations: 2GB
In total: 58GB

Optimizer + Gradient Memory

oYololololoo)o
Yol oYototoYoYo

Reducing Memory - System Level

Weight Memory

Lossless methods (model parallelism)

Work for different training scenarios Significant overhead!

Trade time for less memory

Activation Memory
(activation checkpointing)

Optimizer + Gradient Memory
(optimizer states parallelism, memory offloading,
per-layer weight updates)

Reducing Memory - System Level

Weight Memory

Lossless methods (model parallelism)

Work for different training scenarios Significant overhead!

Trade time for less memory "RAM: 19 TB/s (20 MB)

HBM: 1.5 TB/s (40 GB)

Activation Memory 1/120 x

(activation checkpointing) :12.8 GB/s

(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size
Optimizer + Gradient Memory
(optimizer states parallelism, memory offloading,
per-layer weight updates)

Reducing Memory - Algorithm Level

Lossy methods

Better trade-off: Weight Memory
between memory reduction and overhead

Task-dependent:

Fine-tuning?
Pre-training / continual training?

Activation Memory

Focus on:
Quantization and low-rank

Optimizer + Gradient Memory

Reducing Memory - Algorithm Level - Fine-tuning

Lossy methods Fine-tuning:
Better trade-off: Weight Memory Low-rank:
between memory reduction and overhead \ Low-rank Adaptation (LoRA)

Quantization:
Low-precision Training
8-bit optimizer

Task-dependent:
Fine-tuning?
Pre-training / continual training?

Low-rank + Quantization:
QLoRA

Y

Optimizer + Gradient Memory

Activation Memory

Focus on:
Quantization and low-rank

Why they work well in fine-tuning?

“Simple” optimization landscape:
Less sensitive to approximation error

Even lead to better generalization:
Avoid catastrophic forgetting

Reducing Memory - Algorithm Level - Pre-training

Pre-training: Fine-tuning:

How about pre-training?

Complex optimization Low-rank: Low-rank:

landscape Low-rank Adaptation (LoRA) 0 Low-rank Adaptation (LoRA)

Approximation may lead

to strong degradation Quantization: 4_ Quantization:
Low-precision Training @ Low-precision Training
8-bit optimizer 8-bit optimizer
Low-rank + Quantization: Low-rank + Quantization:
QLoRA 0 QLoRA

System-level Memory Reduction:
Activation checkpointing

Parallelism Q

Memory offloading
Per-layer weight updates

Reducing Memory - Algorithm Level - Pre-training

Pre-training: Fine-tuning:
How about pre-training?
Complex optimization Low-rank: Low-rank:
landscape Low-rank Adaptation (LoRA) 0 Low-rank Adaptation (LoRA)

Approximation may lead
to strong degradation

4_ Quantization:

Low-precision Training
8-bit optimizer

Quantization:
Low-precision Training
8-bit optimizer

Low-rank + Quantization:
QLoRA

Low-rank + Quantization:
QLoRA

Why low-rank adaptation does not work for pre-training?

Any alternative low-rank solutions? Galore'!

Galore: Gradient Low-Rank Projection

Weight Memory

Galore
(8-bit + per-layer)

—

Activation Memory

Optimizer + Gradient Memory

LLaMA-7B

<24 GB

Reduce:
optimizer states
and

weight gradients

Achieve:
82.5% reduction

C4 Dataset LLaMA-7B single RTX 4090 161

e

8-bit AdamW
8-bit Gal.ore

19.7B training tokens

/ rank= 1024 / 4096

Perplexity:
8-bit GalLore: 14.65

8-bit Adam: 14.61

Pre-training - for the first time!

0 5 10

15 20

Token Seen (Billions)

Galore: Gradient Low-Rank Projection

Weight Memory

Reduce:
optimizer states
and

weight gradients

Galore
(8-bit + per-layer)

—

Activation Memory Achi
chieve:

82.5% reduction

Optimizer + Gradient Memory
<24 GB

O O PyTorch

>1k oo

[

Q.
m Y rep transformers + Galore A“‘

_ _ _ . . I Iy SO\’
Pre-training - for the first time! ks 1t g/,,l)/bg (\\) co\os

C4 Dataset LLaMA-7B single RTX 4090

Background: Low-Rank Adaptation (LoRA)

A R Fine-tuning:
W=W*"+ AB
W* € R2*4 . fixed pre-trained weights
S A € R?**" B € R"*%:learnable low-rank adaptors
x———]
LoRA

Pre-training:

wW=W,+ AB

W, € R?*? :fixed initial weights

A € RY*XT B € R"*4: earnable low-rank adaptors
(much larger rank r)

Large degradation!

Why does LORA not work well for pre-training?

s W=W,+ AB

Pretrained
Weights

1= Rdxd

Complex optimization landscape
(initialization is far from the optimal solution)

Limited expressivity
(optimal solution is outside the low-rank subspace)

Don’t restrict weights in low-rank subspace!

What we need:
A strategy that allows full-parameter training while being memory-efficient

Shift focus: low-rank weights -> low-rank gradients

A GO
Weight gradients are low-rank

G, € R1*4js the gradient of W atstep t
rank(G,) < d

Widely used in practice:

low-rank gradient compression
(PowerSGD)

visualize G;in 2D

\ectors

Consecutive gradients are similar

Gy, G, G,, ... are not only low-rank,

but similar to each other:
GOzGlszz“'

OCosine Similarity Matrix, model.layers.2 self_attn.k_proj OCosine Similarity Matrix, model.layers.7 self_attn.q_proj

10000 10000
2500 2500 0.9975
5000 5000 0.9950
7500 > 7500 0.9925 5,
= =
5 5
E g £
10000 & £ 10000 0.9900 5
v g v
£ £
w w
Q Q
12500 o 12500 0.9875 ©
15000 15000 0.9850
17500 17500 0.9825
20000 20000 Eesls e & 2 = 0.9800
5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000
\ectors \ectors

Similarity between gradients G; and G;
(for any iterations i and j)

visualize G;in 2D

Consecutive gradients can be represented in

the same subspace P

We can find a subspace P, such that:

PP"(Gy) =~ Gy
PPT(Gl) ~ Gl
PP'(G3) = G,

A

visualize G;in 2D

Consecutive gradients can be represented in
the same subspace P

We can find a subspace P, such that:
PP"(Gy) =~ Gy
PP"(G,) ~ G,
PP'(G3) = G,

Project gradient at iteration t:
Rt:PT())Et PPT()

2D case:
P':2D - 1D R, is a scalar

dim=d:
PT:d - rwherer«<d R,€R"*¢ rd

visualize G;in 2D

Why projected gradient is related to memory reduction?

Project gradient at iteration t:
Ro= P(G),G, = PTP(c) IR
Low-rank gradient R, provides major information of gradient

For optimizers that require to store optimizer states, such as Adam:

Adam(R;): low-rank R, -> low-rank optimizer states M, V, @ i

Adam(G,): full-rank G, -> full-rank optimizer states

Reduce optimizer memory

Preserve true gradient statistics in optimizers

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,

Gy
—
R, < project(G;) ih

Intermediate
Stored

W,

For every T iterations:

Compute and store P,= SVD(G;)

P, is the projection matrix.

Intermediate
Stored

For every T iterations:
Compute and store P,= SVD(G;)
P, is the projection matrix.

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t: | W;

Given its gradient matrix G,

Pt G

«— Adam keeps @I @
*.1

R; < project(G;)

R, < update(R,)

FE VRN

G, < project_back(R,)

Intermediate
Stored

For every T iterations:
Compute and store P,= SVD(G;)

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t: | W;

P, is the projection matrix.
Given its gradient matrix G, | G¢
R iect(G,) R, | [P ¢
t < project(G; t | | Ot t
\

R, < update(R,) R, | — Adam keeps @ @
G, < project_back(R,) G, 4_ .‘ Need to store:
we [Py,
dr 2dr

Wi < W, + G,

dZ

Galore: Gradient Low-Rank Projection

For every T iterations:
Compute and store P,= SVD(G;)
P, is the projection matrix.

For any weight matrice W, at iteration t:
Given its gradient matrix G,
R; < project(G;)
R, < update(R,)

G, < project_back(R,)

Wipq <« Wi+ Et R

visualize G; in 3D

Galore: Gradient Low-Rank Projection

For every T iterations:
Compute and store P,= SVD(G;)
P, is the projection matrix.

For any weight matrice W, at iteration t:

Given its gradient matrix G,
t=0
Initialize W,

R; < project(G;)
R, < update(R,)

G, < project_back(R,)

We1 < W+ G, / .

visualize G; in 3D

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

visualize G; in 3D

t=0

Initialize W,
Initialize P,
(first subspace)

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

visualize G; in 3D

t=0

Initialize W,
Initialize P,
(first subspace)

te (1, Ty
Learning through
Gy

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

visualize G; in 3D

t=0

Initialize W,
Initialize P,
(first subspace)

te (1, Ty
Learning through
Gy

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

visualize G; in 3D

t= T1 +1
Compute Py,
(change subspace)

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

+ AW, +

visualize G; in 3D

t= T1 +1
Compute Py,
(change subspace)

te(T{+1,T,)

Pt — PTl
Learning through
Gy

Galore: Gradient Low-Rank Projection

For any weight matrice W, at iteration t:

Given its gradient matrix G,
R; < project(G;)

R, < update(R,)

G, < project_back(R,)

Wi <« W, + G,

For every T iterations:
Compute and store P,= SVD(G;)

P, is the projection matrix.

+ AW, +

2
>

visualize G; in 3D

t= T1 +1
Compute Py,
(change subspace)

te(T{+1,T,)

Pt — PTl
Learning through
Gy

Continue until
convergence

Full-Rank LoRA

i l | A0

Galore: Memory Usage .

2dr + 4dr
Memory Usage Weight (W) Optim States Projection (P)
(Mt' Vt)
Full-rank 2d? 3d?

LoRA d2 + 2dr 4dr mn + 6dr

0
0
Galore d> 2dr mn + 3dr

< dr,low-bit projection

More memory efficient than LoRA ! direction does not need to be precise

GalLore

Especially for pre-training, where r is large . . ZX‘

(1/4 full-rank)
d? dr 2dr

Combing with existing techniques

1. 8-bit Optimizer
Store optimizer states in 8-bit

2. Per-Layer Weight Update
Avoid memory for storing full-model weight gradients

Forward

Backwa rd

W _ Weight Update /

Discard gradient G,
Update weight W, by G,

Receive gradient G,

Galore: Benchmark — Pre-Training on C4

LLaMA-130M LLaMA-350M
50 40
A Baseline Baseline
5 4

LoRA 35 LoRA
GaLore and LoRA: _40- Galore | GalLore

(0] (0]

rank = 1/4 full-rank 8% :

30 = 2
25 - 201
20 T - - - 15+ - . T .
0.5 1.0 1.5 2.0 0 2 4 6 8
= : £3 Token Seen (Billions Token Seen (Billions
Significantly outperform (Bilions) (Bilions)
30 LLaMA-1B LLaMA-7B
L (0 RA ! Baseline 241 8-bit AdamW
LoRA = 8-bit Galore
22 A
25 GaLore
B 2]
. ¥ 5
Match full-rank baseline g0 E g
o ~
16
157 14-
00 25 50 75 100 125 0 5 10 15
Token Seen (Billions)

20
Token Seen (Billions)

Galore: Benchmark — Efficiency

BF16 AdamW | | |
Rank Retain grad Memory Token/s
Adafactor | |

8-bit AdamW Yes 40GB 1434
AdamW (no retaining grad)] 8-bit GaLore 16 Yes 28GB 1532
8-bit Adam | | 8-bit Galore 128 Yes 29GB 1532
B Weight 16-bit GaLore 128 Yes 30GB 1615

8-bit Adam (no retaining grad) [Activation)
1 Optimization 16-bit GaLore 128 No 18GB 1587

8-bit GaLL taini d RTX-4090 [Weight Gradient .
it GaLore (no retaining grad) 1 Others 8-bit GaLore 1024 Yes 36GB 1238
0 10 20 30 40 50 60 * SVD takes around 10min for 7B model, but runs every T=500-1000 steps.
Memory cost (GB)
Memory Comparison Throughput Comparison

(Third-Party Evaluation by LLaMA Factory)

LLaMA-7B single RTX 4090

Bl
2
galore-torCh Github: https://github.com/jiaweizzhao/Galore O

galore-torch > 1k

from galore_torch import GaLoreAdamW, GaLoreAdamW8bit
define param groups as galore_params and non_galore_params

param_groups = [{'params': non_galore_params},
{'params': galore_params, 'rank': 128, 'update_proj_gap': 200,
'scale': 0.25, 'proj_type': 'std’}]

optimizer = GaLoreAdamW(param_groups, 1r=0.01)

Plug it in!

O PyTorch

vt More integrations are underway!

o

o)
v 76,.C transformers + Galore

. o\~
"gbf,mg © co\os®

https://github.com/jiaweizzhao/GaLore

Galore: Future Works

* GalLore-Distributed.:
* Asingle RTX 4090 takes 3 months to fully pre-train a LLaMA 7B model on C4
* Multiple 4090s are needed
* Low-bandwidth elastic training

* Better Galore
* Improve throughput efficiency
* Further reduce memory overhead

Memory-Efficient Training: Future Direction

* Focus more on challenging tasks:
* Difficult fine-tuning tasks (e.g., reasoning tasks)
* Continual training
* Pre-training

 Consider optimization and memory limitations jointly
 Studying what are “redundancy” inside training dynamic

* Memory reduction for weight and activation

Thank you!

