

AI Metropolis: Scaling LLM Multi-Agent Simulation with Out-of-order Execution

Zhiqiang Xie†

Joint work with

Hao Kang*, Ying Sheng †, Tushar Krishna*, Kayvon Fatahalian† and Christos Kozyrakis †

† Stanford University *Georgia Institute of Technology

From LLM Agents to Agent Society

Please do a portrait of an LLM agent

Image created

From LLM Agents to Agent Society

Image created

Please do a portrait of an LLM agent

Č OASIS

Automation or Simulation?

The Biggest Potential of Multi-agent Systems

CAMEL-AI

From LLM Agents to Agent Society

Image created

Please do a portrait of an LLM agent

To OASIS

Automation or Simulation?

The Biggest Potent Multi-agent Systen

CAMEL-AI

Project Sid: 1,000 AI Agents Living in Minecraft

Explore Project Sid where 1,000 AI Agents test their wits in the immersive world of Minecraft. Watch AI evolve in a gaming realm!

Case Studies News September 8, 2024

6

How is the Simulated World Constructed

Input: target_step, agents, world Initialize: step ← 0 while step < target_step do actions ← [] for all agent in agents do actions.append(agent.proceed(world)) end for world.step(actions) step ← step + 1 end while

Step function, a paradigm we long loved since training RL agents

It does not SCALE!

Causality and Dependency

Global Synchronization

introduces excessive **Dependency**

to enforce Causality

which limits **Parallelism**

Causality and Dependency

Global Synchronization

introduces excessive **Dependency**

Real causality dependency might be:

to enforce Causality

which limits Parallelism

AI Metropolis

Smart Dependency Tracking

enables Out-of-order execution

which guarantees **Causality**

and release more Parallelism

Events of Time 0:

- A: perceive B and act (8s)
- B: perceive A and act (8s)
- C: perceive nothing and act (1s)
- D: perceive nothing and act (1s)

Wall time: 8s

Average parallelism: 2.25

Events of Time 1:

- A: perceive nothing and act (1s)
- B: perceive nothing and act (1s)
- C: perceive D and act (10s)
- D: perceive C and act (10s)

Wall time: 10s

Average parallelism: 2.2

Events of Time 2:

- A: perceive nothing and act (1s)
- B: perceive nothing and act (1s)
- C: perceive D and act (2s)
- D: perceive C and act (2s)

Wall time: 2s

Average parallelism: 3

Events of Time 3:

- A: perceive nothing and act (1s)
- B: perceive D and act (2s)
- C: perceive nothing and act (1s)
- D: perceive B and act (2s)

Wall time: 2s

Average parallelism: 3

Events:

- Time 0 (0-8s): A <> B, C, D
- Time 1 (8-18s): C<> D, A, B
- Time 2 (18-20s): C<> D, A, B
- Time 3 (20-22s): B <> D, A, C

Wall time: 22s

Average parallelism: 2.36

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹³

Events:

- Time 0: A <> B (0-8s), C (0-1s), D (0-1s)
- Time 1: C<> D, A, B
- Time 2: C<> D, A, B
- Time 3: B <> D, A, C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹⁴

Events:

- Time 0: A <> B (0-8s), C (0-1s), D (0-1s)
- Time 1: C<> D (1-11s), A, B
- Time 2: C<> D, A, B
- Time 3: B <> D, A, C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹⁵

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D, A, B
- Time 3: B <> D, A, C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹⁶

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D, A, B (9-10s)
- Time 3: B <> D

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D, A, B (9-10s)
- Time 3: **B** <> D, **A**, C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹⁸

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D, A, B (9-10s)
- Time 3: **B** <> D, **A**, C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.¹

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D (11-13s), A, B (9-10s)
- Time 3: **B** <> D, **A** (11-12s), C

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.²

Events:

- Time 0: A <> B (0-8s), C, D (0-1s)
- Time 1: C<> D (1-11s), A, B (8-9s)
- Time 2: C<> D (11-13s), A, B (9-10s)
- Time 3: B <> D(13s-15s), A (11-12s), C (13-14s)

Wall time: 15s

Average parallelism: 3.47

Causal Violation: Agent observes an **out-of-sequence event** or misses an **expected event**.²

See paper for and more details:

- Proofs
- Efficient graph update
- Scalable implementation
- Priority scheduling

Full Day 25 Agent Simulation

(a) Simulation using Llama-3-8b-instruct on NVIDIA L4 GPU

(b) Simulation using Llama-3-70b-instruct on NVIDIA A100 GPUs

- Up to **3.25x** faster than the original implementation (single-thread), **1.67x** than parallel implementation (parallel-sync)
- 74.7% of oracle performance on 8 GPUs, 82.9% on single

Scaling Up to 1000 Agents

• Up to **19.5x** faster than the original implementation (single-thread), **4.25x** than parallel implementation (parallel-sync) as # agents scale

To build an AI Society

Why do we need a scheduler?

- Shared states in the environment require synchronization for causality
- Human-like interaction expect faster and more predictable response, contrary to LLM inference
- It utilize application-specific
 dependency and priority information
 to achieve better efficiency and user
 satisfaction

Prototype and traces will release soon!