
Zhiqiang Xie†
Joint work with

Hao Kang*, Ying Sheng †, Tushar Krishna*, Kayvon Fatahalian† and Christos Kozyrakis †
† Stanford University *Georgia Institute of Technology

AI Metropolis: Scaling LLM Multi-Agent Simulation
with Out-of-order Execution

0

From LLM Agents to Agent Society

1

From LLM Agents to Agent Society

2

From LLM Agents to Agent Society

3

How is the Simulated World Constructed

Step function, a paradigm we long loved since training RL agents
4

Generative Agents UIST’23

It does not SCALE!

Someone thinking
about what to eat

Folks chatting

GPU is not all your need : (
5

Trace snippet of agent activities

Ag
en

t
ID

Causality and Dependency

Global Synchronization

introduces excessive Dependency

to enforce Causality

which limits Parallelism

6

Ste

Ste Ste

Causality and Dependency

Global Synchronization

introduces excessive Dependency

to enforce Causality

which limits Parallelism

7

Ste

Ste Ste

Real causality dependency might be:

AI Metropolis

Smart Dependency Tracking

enables Out-of-order execution

which guarantees Causality

and release more Parallelism

8

Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0

9

Events of Time 0:

• A: perceive B and act (8s)

• B: perceive A and act (8s)

• C: perceive nothing and act (1s)

• D: perceive nothing and act (1s)

Perceive Radius

D @ 0
Wall time: 8s

Average parallelism: 2.25

Spatiotemporal Dependency Graph

A @ 1

B @ 1

C @ 1

10

Events of Time 1:

• A: perceive nothing and act (1s)

• B: perceive nothing and act (1s)

• C: perceive D and act (10s)

• D: perceive C and act (10s)

Perceive Radius

D @ 1

Wall time: 10s

Average parallelism: 2.2

Spatiotemporal Dependency Graph

A @ 2

B @ 2

C @ 2

11

Events of Time 2:

• A: perceive nothing and act (1s)

• B: perceive nothing and act (1s)

• C: perceive D and act (2s)

• D: perceive C and act (2s)

Perceive Radius

D @ 2

Wall time: 2s

Average parallelism: 3

Spatiotemporal Dependency Graph

A @ 3

B @ 3

C @ 3

12

Events of Time 3:

• A: perceive nothing and act (1s)

• B: perceive D and act (2s)

• C: perceive nothing and act (1s)

• D: perceive B and act (2s)

D @ 3
Wall time: 2s

Average parallelism: 3

Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.13

Events:

• Time 0 (0-8s): A <> B, C, D

• Time 1 (8-18s): C<> D, A, B

• Time 2 (18-20s): C<> D, A, B

• Time 3 (20-22s): B <> D, A, C

Perceive Radius

D @ 0
Wall time: 22s

Average parallelism: 2.36

Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.14

Events:

• Time 0: A <> B (0-8s), C (0-1s), D (0-1s)

• Time 1: C<> D, A, B

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C

D @ 0

Coupled

Spatiotemporal Dependency Graph

A @ 0

B @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.15

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C (0-1s), D (0-1s)

• Time 1: C<> D (1-11s), A, B

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C

Spatiotemporal Dependency Graph

A @ 1

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.16

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C
B @ 1

Spatiotemporal Dependency Graph

A @ 2

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.17

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D

B @ 2

Spatiotemporal Dependency Graph

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.18

Potential causal violation

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D, A, C

B @ 3

A @ 2

Spatiotemporal Dependency Graph

A @ 2

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.19

C @ 1

D @ 1

B @ 2

Blocking

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D, A, C

Spatiotemporal Dependency Graph

A @ 3

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.20

C @ 2

D @ 2

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D (11-13s), A, B (9-10s)

• Time 3: B <> D, A (11-12s), C

B @ 2

Spatiotemporal Dependency Graph

A @ 3

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.21

C @ 3

D @ 3B @ 3
Wall time: 15s

Average parallelism: 3.47

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D (11-13s), A, B (9-10s)

• Time 3: B <> D(13s-15s), A (11-12s), C (13-14s)

See paper for and more details:

• Proofs

• Efficient graph update

• Scalable implementation

• Priority scheduling

Spatiotemporal Dependency Graph

A@x

D@y

C@y F@z

E@yB@x

22

Full Day 25 Agent Simulation

• Up to 3.25x faster than the original implementation (single-thread), 1.67x than parallel
implementation (parallel-sync)

• 74.7% of oracle performance on 8 GPUs, 82.9% on single
23

Similar scalability as oracle
(optimal scheduling,
knowing all future events)

3.25x

1.67x

Only compute the tasks on
longest causality path

Scaling Up to 1000 Agents

• Up to 19.5x faster than the original implementation (single-thread), 4.25x than parallel
implementation (parallel-sync) as # agents scale

24

Closing gap to hardware
limit as # agents scale

To build an AI Society

Environments:

Scheduler:

Serving Engines:

25
Tentative Logo, acknowledgement to ChatGPT

Why do we need a scheduler?

• Shared states in the environment
require synchronization for causality

• Human-like interaction expect faster
and more predictable response,
contrary to LLM inference

• It utilize application-specific
dependency and priority information
to achieve better efficiency and user
satisfaction

Prototype and traces will release soon!

	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

