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From LLM Agents to Agent Society
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How is the Simulated World Constructed

Step function, a paradigm we long loved since training RL agents
4

Generative Agents UIST’23



It does not SCALE!

Someone thinking 
about what to eat

Folks chatting

GPU is not all your need : (
5

Trace snippet of agent activities
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Causality and Dependency

Global Synchronization

introduces excessive Dependency

to enforce Causality

which limits Parallelism
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Causality and Dependency

Global Synchronization

introduces excessive Dependency

to enforce Causality

which limits Parallelism
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Real causality dependency might be:



AI Metropolis

Smart Dependency Tracking

enables Out-of-order execution

which guarantees Causality

and release more Parallelism
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Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0
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Events of Time 0:

• A: perceive B and act (8s)

• B: perceive A and act (8s)

• C: perceive nothing and act (1s)

• D: perceive nothing and act (1s)

Perceive Radius

D @ 0
Wall time: 8s

Average parallelism: 2.25



Spatiotemporal Dependency Graph

A @ 1

B @ 1

C @ 1
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Events of Time 1:

• A: perceive nothing and act (1s)

• B: perceive nothing and act (1s)

• C: perceive D and act (10s)

• D: perceive C and act (10s)

Perceive Radius

D @ 1

Wall time: 10s

Average parallelism: 2.2



Spatiotemporal Dependency Graph

A @ 2

B @ 2

C @ 2
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Events of Time 2:

• A: perceive nothing and act (1s)

• B: perceive nothing and act (1s)

• C: perceive D and act (2s)

• D: perceive C and act (2s)

Perceive Radius

D @ 2

Wall time: 2s

Average parallelism: 3



Spatiotemporal Dependency Graph

A @ 3

B @ 3

C @ 3
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Events of Time 3:

• A: perceive nothing and act (1s)

• B: perceive D and act (2s)

• C: perceive nothing and act (1s)

• D: perceive B and act (2s)

D @ 3
Wall time: 2s

Average parallelism: 3



Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.13

Events:

• Time 0 (0-8s): A <> B, C, D

• Time 1 (8-18s): C<> D, A, B

• Time 2 (18-20s): C<> D, A, B

• Time 3 (20-22s): B <> D, A, C

Perceive Radius

D @ 0
Wall time: 22s

Average parallelism: 2.36



Spatiotemporal Dependency Graph

A @ 0

B @ 0

C @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.14

Events:

• Time 0: A <> B (0-8s), C (0-1s), D (0-1s)

• Time 1: C<> D, A, B

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C

D @ 0

Coupled 



Spatiotemporal Dependency Graph

A @ 0

B @ 0

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.15

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C (0-1s), D (0-1s)

• Time 1: C<> D (1-11s), A, B

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C



Spatiotemporal Dependency Graph

A @ 1

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.16

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B

• Time 3: B <> D, A, C
B @ 1



Spatiotemporal Dependency Graph

A @ 2

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.17

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D

B @ 2



Spatiotemporal Dependency Graph

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.18

Potential causal violation

C @ 1

D @ 1

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D, A, C

B @ 3

A @ 2



Spatiotemporal Dependency Graph

A @ 2

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.19

C @ 1

D @ 1

B @ 2

Blocking

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D, A, B (9-10s)

• Time 3: B <> D, A, C



Spatiotemporal Dependency Graph

A @ 3

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.20

C @ 2

D @ 2

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D (11-13s), A, B (9-10s)

• Time 3: B <> D, A (11-12s), C

B @ 2



Spatiotemporal Dependency Graph

A @ 3

Causal Violation: Agent observes an out-of-sequence event or misses an expected event.21

C @ 3

D @ 3B @ 3
Wall time: 15s

Average parallelism: 3.47

Events:

• Time 0: A <> B (0-8s), C, D (0-1s)

• Time 1: C<> D (1-11s), A, B (8-9s)

• Time 2: C<> D (11-13s), A, B (9-10s)

• Time 3: B <> D(13s-15s), A (11-12s), C (13-14s)



See paper for and more details:

• Proofs

• Efficient graph update

• Scalable implementation

• Priority scheduling

Spatiotemporal Dependency Graph

A@x

D@y

C@y F@z

E@yB@x
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Full Day 25 Agent Simulation

• Up to 3.25x faster than the original implementation (single-thread), 1.67x than parallel 
implementation (parallel-sync)

• 74.7% of oracle performance on 8 GPUs, 82.9% on single
23

Similar scalability as oracle 
(optimal scheduling, 
knowing all future events)

3.25x

1.67x

Only compute the tasks on 
longest causality path



Scaling Up to 1000 Agents

• Up to 19.5x faster than the original implementation (single-thread), 4.25x than parallel 
implementation (parallel-sync) as # agents scale

24

Closing gap to hardware 
limit as # agents scale



To build an AI Society

Environments:

Scheduler:

Serving Engines:

25
Tentative Logo, acknowledgement to ChatGPT

Why do we need a scheduler? 

• Shared states in the environment 
require synchronization for causality

• Human-like interaction expect faster 
and more predictable response, 
contrary to LLM inference

• It utilize application-specific 
dependency and priority information 
to achieve better efficiency and user 
satisfaction

Prototype and traces will release soon!
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