

MEADOW: MEMORY-EFFICIENT DATAFLOW AND DATA PACKING FOR LOW POWER EDGE LLMS

Abhishek Moitra¹, Arkapravo Ghosh¹, Shrey Agarwal², Aporva Amarnath³, Karthik Swaminathan³, Priyadarshini Panda¹

¹Yale University, ²IIT Roorkee, ³IBM Research

ScaleUp of Large Language Models

Hardware Deployment Platforms Today

Widescale AI Deployment Platforms

What Happens when an LLM gets a Query?

What Happens when an LLM gets a Query?

Prefill Stage

- Large number of input tokens
- Contextual Understanding

Decode Stage

 Tokens generated oneby-one

GEMM Dataflow and HBM-based GPUs

Outputs are fetched and stored on and off DRAM chip during attention computation

High Bandwidth Memory to Overcome Bottleneck

- HBM overcomes memory bottleneck through high bandwidth
- Consumes 2x power/GB of storage compared to standard DDR4 DRAMs
- Low power embedded devices still have a strict power constraint < 10 W

Memory Bottleneck During the Prefill Stage

Memory Bottleneck During the Decode Stage

MEADOW: Dataflow and Compression Strategy for Memory-bound LLM

Weight Packing

- Decomposes large weight matrices to smaller unique chunks
- Loss-less conversion
- Reduces weight fetch latency during prefill and decode stages

Token-parallel Head Sequential Dataflow

- Pipelines the attention layers
- Prevents data fetch and store latency during Prefill

*In Collaboration with IBM Research

Loss-less Weight Packing

• Divides a weight matrix into chunks

Yale University

LUX ET VERITAS

- Encoded W \rightarrow Weight Matrix encoded in terms of the unique chunk IDs
- Unique Matrix + Encoded W transferred from DRAM to On-chip Compute

Frequency-aware Reindexing to Further Increase Packing Efficiency

Compression Benefits for OPT-125M LLM

LUX ET VERITA

Architecture of MEADOW

Weight Unpacking and LookUp (WILU) Module fetches packed weights and

- performs the decompression Inputs and Outputs are stored on BRAMs
- Weight BRAM contains the encoded weights and unique matrices

Unpacking During Weight Fetch from Weight BRAM

Weight BRAM

Yale University

Parallel and Broadcasting MAC Units

Parallel MAC PE

Broadcasting PEs

- Useful for SMxV operation
- Parallelization across output channel
- Multiply-accumulate over multiple cycles

Parallel PE

- Used for all other operations
- Prallelization across input channel
- Multiplication and Accumulation in one cycle

Token Parallel Head Sequential Dataflow

Token Parallel Head Sequential Dataflow

Packing for Low Power Edge LLMs." *arXiv preprint arXiv:2503.11663* (2025).

MEADOW Optimization Framework

Experiments and Results

Hardware Implementation Parameters

LLM Models	OPT-125M and OPT-1.3B
Dataset - LAMBADA dataset	Finetuned with Smoothquant [1] (8-bit Weights and Activations)

Parameter	Value
FPGA Board	Xilinx ZCU102
LUTs	600K
DSPs	2520
BRAM	32.1Mb

Baseline: LLM implemented with GEMM dataflow with 8-bit weights without weight packing

MEADOW Implementation: LLM with TPHS dataflow and 8-bit weights with weight packing

Yale University [1] Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." *International Conference on Machine Learning*. PMLR, 2023.

End-to-end Latency Reduction with MEADOW

MEADOW Lowers End-to-end Latency by 1.5x for OPT 125M and OPT 1.3B LLMs compared to GEMM-based Acceleration

*Results based on Xilinx ZCU102 FPGA (10W) at different DRAM Bandwidths

Prefill = 512 Decode = 64

Prefill = 512 Decode = 512

Understanding the Latency Reduction

- Attention computation latency reduction by 2.5x
- TPHS Dataflow reduces data fetch & store latency by pipelining attention
- Weight Packing reduces weight data fetch latency by 1.8x

MEADOW

Comparison with Prior Works

- CTA Token Pruning and FlightLLM Sparse Multiplication
 - GEMM dataflow and No Weight Packing
- MEADOW TPHS + Weight Packing
- MEADOW wins by minimizing memory fetch and storage latency
 - Prefill → 2x lower Latency than Baseline
 - Decode → 1.6x lower latency than baseline

Co-optimizing Dataflow with Memory Bandwidth & #PEs

Summary

- Edge LLM Implementation is severely memory bound due to low memory bandwidth
- MEADOW Proposes Weight Packing and the Token Parallel Head Sequential Dataflow
- Weight Packing: Approximation-less Weight Packing Strategy → 1.8x reduction in weight fetch latency
- TPHS Dataflow: Prevents data movements and better pipeline efficiency → 2x lower prefill latency

Paper QR Code

Github Repository Coming Soon...

Parallel and Broadcasting MAC Units

Parallel MAC PE

Broadcasting PEs

- Useful for SMxV operation
- Parallelization across output channel
- Multiply-accumulate over multiple cycles

Parallel PE

- Used for all other operations
- Prallelization across input channel
- Multiplication and Accumulation in one cycle

Pipelined Softmax Unit

- Each Stage is pipelined each requiring T cycles
- Token values are compared and stored in EXP Stage Buffer
- After T cycles, *max* is computed
- e^{x-max} is computed and stored in DIV Stage Buffer
- $\sum e^{x-max}$ is computed in T cycles
- Softmax value is computed over T cycles

Yale University