Context Parallelism for Scalable Million-Token Inference

Amy (Jie) Yang, Jingyi Yang, Aya Ibrahim, Xinfeng Xie, Bangsheng Tang, Grigory Sizov, Jeremy Reizenstein, Jongsoo Park, Jianyu Huang

Motivation

- Demand for long context (1M) driven by use cases: e.g. multimodal, code analysis and copilot.
- Processing long context incurs long latency at inference time without optimization.
- Goal: Enable fast, scalable inference without architectural changes.

Key Contributions

- Introduced Context Parallelism (CP) for LLM inference.
- Developed two ring attention variants: pass-KV and pass-Q to support low-latency prefill and decode with long context.
- Achieved 1M-token inference with Llama3 405B in 77s with 93% parallel efficiency.

Long Context Inference Challenges

- Compute:
 - Dense attention FLOPs scale quadratically with context length.
 - Attention compute dominates
- Memory:
 - KV cache grows linearly with context.
- Communication:
 - communication latency increases when parallelized to multiple hosts.

	Prefill	Decode
Attention	O(T ^ 2 * D)	O(B * D * T)
FFN	O(T * D * hidden)	O(B * D * hidden)

Attention compute complexity

context	TTFT	ттіт
128K	42s	~100ms
8K	1.6s	<= 30ms

Single host 405B FP8 model serving latency

Parallelism Comparison

- TP: High all-reduce overhead, poor inter-node scaling.
- CP: Distributes input tokens, passes only Q or KV tensors.
- CP has significantly lower communication cost

Table 2. Communication and memory cost comparison between tensor parallel (TP) and context parallel (CP) for full prefill. T: sequence length, D_H : head dimension, N_H : # of attention heads, N_{KV} : # of key/value heads, N_{TP} : TP group size, W: model parameter size. Total comm cost shows the communication cost per transformer block.

	TP	CP
COLLECTIVE	ALLREDUCE	SENDRECV
COMM PER 2 LINEAR	$T \cdot N_H \cdot D_H$	0
COMM PER ATTN	0	$T \cdot N_{KV} \cdot D_H$
TOTAL COMM	$2 \cdot (T \cdot N_H \cdot D_H)$	$T \cdot N_{KV} \cdot D_{H}$
PARAMETER SIZE	$\frac{W}{N_{TP}}$	W

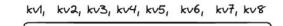
Multi-Turn Chat: Full Prefill, Partial Prefill, Decode

- Full Prefill:
 - prompt processing and KV cache generation.
- Decode:
 - autoregressive generation.
 Generate one token which attends to all previous tokens.
 - Partial Prefill:

98

follow-up prompt that attends to previous prompts and generated tokens.

Decode



×

×

×

×

×

(Full) Prefill

ku, ku2, ku3, ku4, ku5, ku6

	1992 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -		100			
ଦା	×	-	-	-	-	-
Q2	×	×	-	-	-	-
Q3	×	×	×	-	-	-
		×				-
Q5	(×	×	×	×	×	-
Q6	×	×	×	×	×	×
		Pa	artial	Pret	≍II	
		(persis	tent	KV P	refill)
kv	1, kv2	l, kv3,	kv4,	kv5,	kv6,	kv7, k
6 🔨		×				

Q7 x x x x x x x x -Q8 x x x x x x x x x x

Load-Balanced Sharding

- load-balanced sharding with inputs of variable sequence lengths
- both compute and memory are balanced

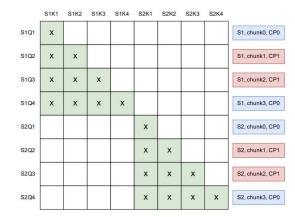


Figure 1. Load-balanced CP sharding with fused inputs in full prefill with 2 CP ranks (CP2). We have 2 input sequences: S1, S2. Each is partitioned evenly into 4 chunks: Q_i / K_i , where i = 1, 2, 3, 4.

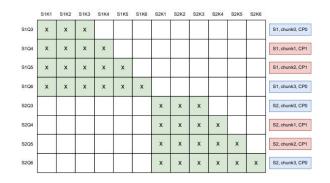


Figure 2. Load-balanced CP sharding with fused inputs partial prefill with 2 CP ranks (CP2). We have 2 input sequences: S1, S2. Load-balanced sharding is applied to the new token Q_i dimension (4 chunks), regardless of how cached token dimension K_i is partitioned in partial prefill.

Ring Attention Algorithms

- Pass-KV ring attention
 - full prefill and partial prefill with low-medium KV cache hit rate
 - communication and computation are overlapped

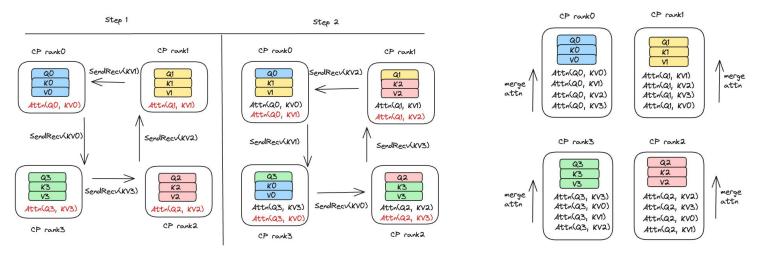
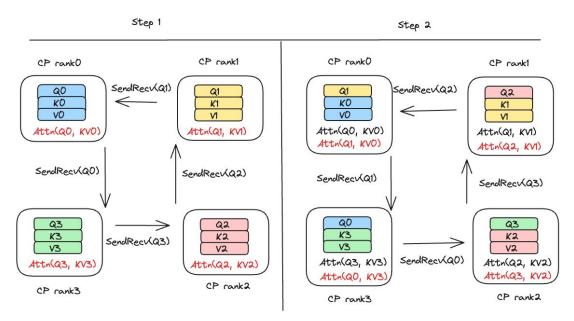


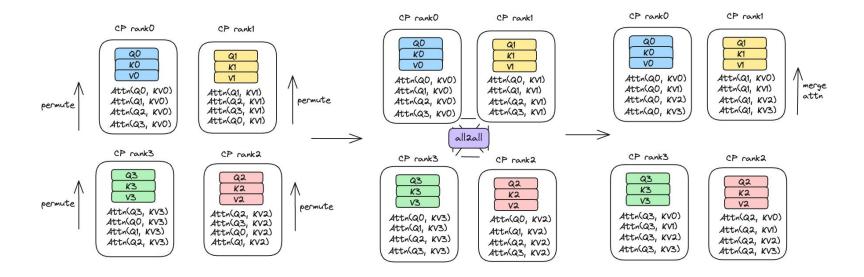
Figure 3. Ring Pass-KV Attention with 4 CP ranks (CP4).

Ring Attention Algorithms



- Pass-Q ring attention:
 - partial prefill with high KV cache hit rate
 - decode

Ring Attention Algorithms



- Pass-Q ring attention
 - permute and all2all partial attention outputs

Experiment Setup

- Model:
 - Llama3 405B, FP8 quantized
 - 8 KV heads, 128 Q heads
- Hardware:
 - Grand Teton Training (GTT)
 - Interconnect: backend RDMA 400Gb/s per GPU
 - Grand Teton Inference (GTI)
 - Interconnect: frontend TCP/IP 100Gb/s per GPU
- Partitioning:
 - 8-way tensor-parallel (TP8) intra host

Results: Prefill Scaling

- Near-linear scaling with CP
- 128K token prefill in 3.8s with CP over 16 nodes.
- 1M-token prefill in 77s.

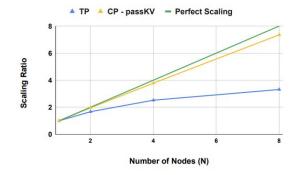
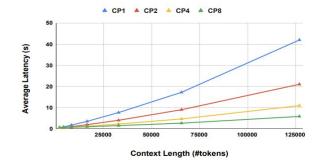
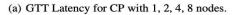
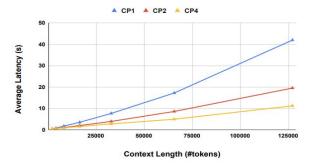


Figure 7. Scaling ratio (latency with one node over latency with N nodes) of context parallel vs. multi-node tensor parallel.







(b) GTI Latency for CP with 1, 2, 4 nodes

Figure 6. Llama3 405B pass-KV full prefill latency.

Results: Pass KV vs. Pass Q Prefill

- KV Cache miss rate <= 5%
 - Pass-Q has lower latency

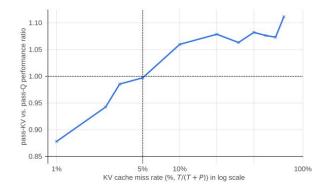


Figure 9. pass-KV / pass-Q speed ratio of 128K context with persistent KV cache miss rate, varying P and T with P + T = 128000, on 4 CP ranks (CP4).

Table 4. TTFT (in ms) for pass-KV vs. pass-Q varying P and T with P + T = 128000, on 4 CP ranks (CP4). P: length of existing tokens in the KV cache, T: length of new tokens.

Р	T	MISS RATE	pass-KV	pass-Q
126720	1280	1.00%	1023.39	898.71
124800	3200	2.50%	1110.18	1046.43
123840	4160	3.25%	1298.92	1280.1
121600	6400	5.00%	1305.56	1302.01
115200	12800	10.00%	2080.67	2205.27
102400	25600	20.00%	3353.02	3617.02
89600	38400	30.00%	4629.23	4922.52
76800	51200	40.00%	5745.08	6217.83
64000	64000	50.00%	6845.21	7367.99
51200	76800	60.00%	7890.35	8468.66
38400	89600	70.00%	8697.27	9666.62
25600	102400	80.00%	10105.78	10652.39
12800	115200	90.00%	11136.4	11571.62
0	128000	100.00%	11462.15	12360.57

Results: Decode

- CP improves prefill, regresses decode latency.
- TTIT increases with CP ranks.
- Recommend decoupling prefill and decode systems.

Table 7. TTFT / TTIT (in ms) comparisons between TP8, CP2, TP16, CP4, TP32 with 128K context length at batch size 1.

	TTFT	TTIT
CP1+TP8	42010	46.26
CP2+TP8	21042	60.23
TP16	29917	39.52
CP4+TP8	10950	71.31
TP32	19841	47.3

Conclusion

- CP improves prefill latency for long-context inference by scaling compute to more nodes and overlapping communication with computation.
- Dynamic pass-KV/pass-Q switching optimizes latency for full prefill, partial prefill, and decode.
- Combines well with retrieval-based approximate methods.