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Attention has bad long-context efficiency 
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Attention Matrix

Q: L×D K: L×D A = QKT: L×L 

×Sequence
Length
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• Quadratic compute complexity
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• Quadratic compute complexity

• Huge KV cache sizes (linear to sequence length)

Attention Matrix

Q: L×D K: L×D A = QKT: L×L 

×Sequence
Length

Attention has bad long-context efficiency 
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Background: State Space Models (SSMs)

• Compress prior context into a state 

• Update states recurrently in-place
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Background: State Space Models (SSMs)
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Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens
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Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens

• Generally smaller than whole sequences’ KVs
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Attention SSM
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Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens

• Generally smaller than whole sequences’ KVs

• Orders of magnitude larger than a single 
token’s KVs
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Attention SSM

Computational 
Complexity O(L2) O(L)

Inference-Time 
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Background: Attention-SSM Hybrid LLMs

• A few Attention layers + many SSM layers 

• Balances efficiency and language modeling 
capability Attention SSM
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Background: Attention-SSM Hybrid LLMs
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Background: Attention-SSM Hybrid LLMs

Model Architectures

Execution Runtimes

Attention SSM
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Background: Attention-SSM Hybrid LLMs
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Background: prefix caching

• Reuses model states (KVs, SSM states) of common prefixes across requests 

• Reduces Time To First Token (TTFT)
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Core challenge
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Core challenge
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SSM’s modeling win complicates their systems win!
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Challenges with strawman

• Naive solution: checkpoint an SSM state 
every x tokens

• Catch 1: cache entries are sparsely-hit

• Catch 2: cache entries are huge
• Frequent cache thrashing & low hit rate

9
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Admission Eviction

Marconi: prefix caching for Hybrid LLMs

• Supports models with arbitrary layer compositions (Hybrid LLMs, pure 
Transformers, pure SSMs) 

• Shouldn’t focus solely on recency 

• Needs to be more judicious in admission and eviction! 

• Leverages unique characteristics of Hybrid LLMs
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“Marconi plays the mamba, listen to the radio, don’t you remember?” — Lyrics of We Built This City, song by Starship



Admission Eviction

Aside from recency:
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Admission Eviction
Forecasts prefixes’ reuse likelihoods

Aside from recency:
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Admission Eviction

Judicious admission

• Existing systems: admit all states of most recent request 

• Marconi: admit states with high reuse likelihood only 

• Key insight 

• Future reuse patterns cannot be predicted… 

• …but can be sufficiently estimated through a taxonomy of potential prefix 
reusing scenarios!
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Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:
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Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

1. Purely input: part of the input sequence 
from a prior request

• E.g., system prompts, few-shot examples
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Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

1. Purely input: part of the input sequence 
from a prior request

• E.g., system prompts, few-shot examples

2. Input and output: input+output 
sequence of a prior request

• E.g., conversation history for chatbots, 
past environment interactions for agents
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Admission Eviction

Different mechanisms for different cases
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Admission Eviction

Different mechanisms for different cases

• Purely input 

• Prefix shared by many requests 

• Can be observed by bookkeeping and 
comparing previous requests
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Admission Eviction

Different mechanisms for different cases

• Purely input 

• Prefix shared by many requests 

• Can be observed by bookkeeping and 
comparing previous requests

• Input and output 

• Conversations usually append to the 
last decoded token

14
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Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:
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Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:

• Intermediates: purely-input prefixes

• Leaves: input-and-output prefixes
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Admission Eviction
Forecasts prefixes’ reuse likelihoods Considers compute savings hits deliver

Aside from recency:

16



Different memory-compute savings tradeoffs

• Unlike KVs, SSM states have fixed size regardless of sequence length or 
compute savings

17Admission Eviction
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Different memory-compute savings tradeoffs

• Unlike KVs, SSM states have fixed size regardless of sequence length or 
compute savings

• FLOP efficiency: compute savings per unit of memory of reusing a state 

17Admission Eviction

FLOP efficiency =
Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)
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Admission Eviction

Different memory-compute savings tradeoffs

• Models with more SSM layers have 
more FLOP-efficient states

18

FLOP efficiency =
Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)



Admission Eviction

FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)
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Admission Eviction

FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)

• Marconi: also considers the potential compute savings

• Utility score: balances recency and FLOP efficiency

19

Utility = recency + α ⋅ flop_efficiencyUtility = recency



Evaluation

• NVIDIA Mamba2-Hybrid-7B with {4, 24, 28} {Attention, SSM, MLP} layers 

• Workloads: conversational (LMSys, ShareGPT) and agentic (SWEBench) 

• Metrics: token hit rate (%), Time To First Token (ms) 

• Large sweep of experiments with varying cache size and request arrival 
patterns

20



Marconi vs. fine-grained checkpointing

• Judicious admission improves the cache utility significantly 

• Average improvement in token hit rate: 4.5X, 7.3X, and 34.4X
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Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs
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• Improves hit rate of longer sequences, which cost more FLOPs
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Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs
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Bigger TTFT win for 
longer sequences!



Marconi

• First prefix caching system for models with arbitrary layer compositions 

• Evaluates cache entries not only on recency, but also: 

• Admission: prefixes’ reuse likelihoods 

• Eviction: compute savings that hits deliver 

• Source code available! https://github.com/ruipeterpan/marconi

23

“Marconi plays the mamba, listen to the radio, don’t you remember?” — Lyrics of We Built This City, song by Starship

https://github.com/ruipeterpan/marconi

