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Attention has bad long-context efficiency

e Quadratic compute complexity Attention

e Huge KV cache sizes (linear to sequence length) Computational |, 5,
Complexity
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Background: State Space Models (SSMs)
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Background: State Space Models (SSMs)

¢ Memory consumption: Attention | SSM
e Fixed-sized regardless of num tokens Computational | ;. | o
_ Complexity |
' Inference-Time
e Generally smaller than whole sequences’ KVs Memory o) | o)
e Orders of magnitude larger than a single 4- ATEeTToN
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Background: Attention-SSM Hybrid LLMs

e A few Attention layers + many SSM layers

e Balances efficiency and language modeling

capability

Attention

Attention
Attention

Transformers




Background: Attention-SSM Hybrid LLMs

e A few Attention layers + many SSM layers

e Balances efficiency and language modeling
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Background: Attention-SSM Hybrid LLMs
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Background: Attention-SSM Hybrid LLMs
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Background: Attention-SSM Hybrid LLMs

Request 1

You are ChatGPT, an LLM ... | Cached
User input: l

Help me fix this code: ... ( Model States

You | are | Chat | GPT
an ==« |input:

Request 2

You are ChatGPT, an LLM ... |_
User input: Reused

Where is MLSys this year?
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Background: prefix caching

e Reuses model states (KVs, SSM states) of common prefixes across requests

e Reduces Time To First Token (TTFT)

Request 1

You are ChatGPT, an LLM ... | Cached
User input: l

Help me fix this code: ... ( Model States

You | are | Chat| GPT
an ==« |input:

Request 2

You are ChatGPT, an LLM ... |,
User input: Reused

Where is MLSys this year?




Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache

NYC| is | a |busy]city



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache

el s [ 5



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix
SSM States

1S
NYC

NYC



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix
SSM States

1S a

NYC IS



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

SSM States
IS a
Previous state / .
NYC IS

was overwritten!



Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

SSM States
IS a busy
Previous state / .
NYC IS a

was overwritten!

SSM'’s modeling win complicates their systems win!
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Challenges with strawman

Request 1

NYC | is a | busy| city

e Naive solution: checkpoint an SSM state
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Challenges with strawman

e Naive solution: checkpoint an SSM state
every x tokens

e Catch 1: cache entries are sparsely-hit
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Challenges with strawman
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Challenges with strawman

A single token’s

e Naive solution: checkpoint an SSM state
every x tokens

e Catch 1: cache entries are sparsely-hit

[ ]
® Catch 2: cache entries are huge SSM states KVs

B KVs SSM States

e Frequent cache thrashing & low hit rate
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Marconi: prefix caching for Hybrid LLMs

e Supports models with arbitrary layer compositions (Hybrid LLMs, pure
Transformers, pure SSMs)

e Shouldn’t focus solely on recency
e Needs to be more judicious in admission and eviction!

e Leverages unique characteristics of Hybrid LLMs
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Aside from recency:

Admission
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Admission

Forecasts prefixes' reuse likelihoods




Judicious admission

e Existing systems: admit all states of most recent request
e Marconi: admit states with high reuse likelihood only
e Key insight

e Future reuse patterns cannot be predicted...

e ...but can be sufficiently estimated through a taxonomy of potential prefix
reusing scenarios!

Admission 12
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Taxonomy of prefix reusing patterns

e Composition of all reused prefixes:

1.

Purely input: part of the input sequence

from a prior request

Admission

e E.g., system prompts, few-shot examples
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Taxonomy of prefix reusing patterns

e Composition of all reused prefixes:

1. Purely input: part of the input sequence
from a prior request

e E.g., system prompts, few-shot examples

2. Input and output: input+output
sequence of a prior request

e E.g., conversation history for chatbots,
past environment interactions for agents

Admission 13
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System Prompt
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(a) System prompt and few-shot prompting
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Different mechanisms for different cases

Admission
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Different mechanisms for different cases

e Purely input

e Prefix shared by many requests

e Can be observed by bookkeeping and

comparing previous requests

Admission
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Different mechanisms for different cases

e Purely input
e Prefix shared by many requests

e Can be observed by bookkeeping and
comparing previous requests

e Input and output

e Conversations usually append to the
last decoded token

Admission 14

[Shareable Prefix] [ Non-shareable] [ LLM Output]

System Prompt Question 1 ]—[ Output 1 ]

System Prompt Few-shot Examples Question 2
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Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

Admission 15



Request history bookkeeping

e Use a radix tree to represent past requests
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Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

e Intermediates: purely-input prefixes

Admission
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Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

e Intermediates: purely-input prefixes

e Leaves: input-and-output prefixes

Admission

Request 1 | NYC

Request 2 | NYC
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( SSM States

KVs

Prefill Decode
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\/
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KVs
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Aside from recency:

Admission Eviction

Forecasts prefixes’ reuse likelihoods Considers compute savings hits deliver



Different memory-compute savings tradeoffs

e Unlike KVs, SSM states have fixed size regardless of sequence length or
compute savings
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Different memory-compute savings tradeoffs

e Unlike KVs, SSM states have fixed size regardless of sequence length or
compute savings

e FLOP efficiency: compute savings per unit of memory of reusing a state
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Different memory-compute savings tradeoffs
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FLOP-aware eviction policy

e Existing systems: recency-focused (i.e., evict using LRU)

Utility = recency
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e Existing systems: recency-focused (i.e., evict using LRU)

e Marconi: also considers the potential compute savings
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FLOP-aware eviction policy

e Existing systems: recency-focused (i.e., evict using LRU)
e Marconi: also considers the potential compute savings

e Utility score: balances recency and FLOP efficiency

Utility = recency + o - flop_efficiency

19 Eviction



Evaluation

e NVIDIA Mamba2-Hybrid-7B with {4, 24, 28} {Attention, SSM, MLP} layers
e Workloads: conversational (LMSys, ShareGPT) and agentic (SWEBench)
o Metrics: token hit rate (%), Time To First Token (ms)

e Large sweep of experiments with varying cache size and request arrival
patterns
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Marconi vs. fine-grained checkpointing

e Judicious admission improves the cache utility significantly

e Average improvement in token hit rate: 4.5X, 7.3X, and 34.4X
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Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs
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Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs
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Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs
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Marconi

e First prefix caching system for models with arbitrary layer compositions
e Evaluates cache entries not only on recency, but also:
e Admission: prefixes' reuse likelihoods

e Eviction: compute savings that hits deliver

e Source code available! https://github.com/ruipeterpan/marconi
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“Marconi plays the mamba, listen to the radio, don't you remember?” — Lyrics of We Built This City, song by Starship E i.%
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https://github.com/ruipeterpan/marconi

