
MLSys 2025, Santa Clara, CA

Marconi: Prefix Caching for the Era 
of Hybrid LLMs
Rui Pan, Zhuang Wang, Zhen Jia, Can Karakus, Luca Zancato, Tri Dao, Yida Wang, Ravi Netravali

1

Outstanding Paper Honorable Mention!




�
	 
�

 
�
� 
�
�
�"���������$����%�

	��

	�

	��

�"
!%
�(
%��
�!
�"
'�
��
)�
���
"�
�$
��
��
�

�����

�����

���&���	�


��������&#�"

�������&#�"
���&���
�	

�� �!��	��

�� �!��	�
�� �!��	���#"

Attention has bad long-context efficiency 

2



Attention Matrix

Q: L×D K: L×D A = QKT: L×L 

×Sequence
Length

Attention has bad long-context efficiency 

2



• Quadratic compute complexity

Attention Matrix

Q: L×D K: L×D A = QKT: L×L 

×Sequence
Length

Attention has bad long-context efficiency 

2



• Quadratic compute complexity

• Huge KV cache sizes (linear to sequence length)

Attention Matrix

Q: L×D K: L×D A = QKT: L×L 

×Sequence
Length

Attention has bad long-context efficiency 

2

Computational 
Complexity

Inference-Time 
Memory

Attention

O(L2)

O(L)



Background: State Space Models (SSMs)

• Compress prior context into a state 

• Update states recurrently in-place

3

Computational 
Complexity

Inference-Time 
Memory

Attention

O(L2)

O(L)

State

Input

Output

SSM (Unfolded)

State1

NYC

State2 State3
… …

is

is

a

a

busy

SSM



Background: State Space Models (SSMs)

• Compress prior context into a state 

• Update states recurrently in-place

3

Computational 
Complexity

Inference-Time 
Memory

Attention

O(L2)

O(L)

SSM

O(L)

O(1)

State

Input

Output

SSM (Unfolded)

State1

NYC

State2 State3
… …

is

is

a

a

busy

SSM



Background: State Space Models (SSMs)

4

Attention SSM

Computational 
Complexity O(L2) O(L)

Inference-Time 
Memory O(L) O(1)



Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens

4

Attention SSM

Computational 
Complexity O(L2) O(L)

Inference-Time 
Memory O(L) O(1)

� ��� ���
��������������

�

�

�

	




�
��

���
��

��
��
���

���
�� ���������

���



Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens

• Generally smaller than whole sequences’ KVs

4

Attention SSM

Computational 
Complexity O(L2) O(L)

Inference-Time 
Memory O(L) O(1)

� ��� ���
��������������

�

�

�

	




�
��

���
��

��
��
���

���
�� ���������

���



Background: State Space Models (SSMs)

• Memory consumption:

• Fixed-sized regardless of num tokens

• Generally smaller than whole sequences’ KVs

• Orders of magnitude larger than a single 
token’s KVs

4

Attention SSM

Computational 
Complexity O(L2) O(L)

Inference-Time 
Memory O(L) O(1)

� ��� ���
��������������

�

�

�

	




�
��

���
��

��
��
���

���
�� ���������

���



Background: Attention-SSM Hybrid LLMs

• A few Attention layers + many SSM layers 

• Balances efficiency and language modeling 
capability Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models

5

Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models



Background: Attention-SSM Hybrid LLMs

• A few Attention layers + many SSM layers 

• Balances efficiency and language modeling 
capability Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models

5

Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models



Background: Attention-SSM Hybrid LLMs

Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models

6



Background: Attention-SSM Hybrid LLMs

Model Architectures

Execution Runtimes

Attention SSM

Attention

Attention

Attention

SSM

SSM

SSM

Attention

SSM

SSM

SSM

Transformers SSMs Hybrid Models

You are ChatGPT, an LLM …
User input: 

Help me fix this code: …

You are ChatGPT, an LLM …
User input: 

Where is MLSys this year?

Model States

Request 1

Request 2
…

Cached

Reused

input:

You

Prefix
Cache

are Chat GPT

, an

6

“Models == Transformers”



Background: Attention-SSM Hybrid LLMs

You are ChatGPT, an LLM …
User input: 

Help me fix this code: …

You are ChatGPT, an LLM …
User input: 

Where is MLSys this year?

Model States

Request 1

Request 2
…

Cached

Reused

input:

You

Prefix
Cache

are Chat GPT

, an

6



Background: prefix caching

• Reuses model states (KVs, SSM states) of common prefixes across requests 

• Reduces Time To First Token (TTFT)

7

You are ChatGPT, an LLM …
User input: 

Help me fix this code: …

You are ChatGPT, an LLM …
User input: 

Where is MLSys this year?

Model States

Request 1

Request 2
…

Cached

Reused

input:

You

Prefix
Cache

are Chat GPT

, an



Core challenge

8

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

KV Cache

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

NYC is a busy city  

KV Cache

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

NYC is a  

KV Cache

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

NYC

NYC

… …

is

is

a

a

busy

NYC is aNYC is

SSM States

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

NYC

NYC

… …

is

is

a

a

busy

NYC is aNYC isNYC

NYC

… …

is

is

a

a

busy

NYC is aNYC is

SSM States

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

NYC

NYC

… …

is

is

a

a

busy

NYC is aNYC isNYC

NYC

… …

is

is

a

a

busy

NYC is aNYC is

Previous state 
was overwritten!

SSM States

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



Core challenge

8

SSM’s modeling win complicates their systems win!

NYC

NYC

… …

is

is

a

a

busy

NYC is aNYC isNYC

NYC

… …

is

is

a

a

busy

NYC is aNYC isNYC

NYC

… …

is

is

a

a

busy

NYC is aNYC is

Previous state 
was overwritten!

SSM States

• Prefix caching is challenging for SSMs: states can’t be rolled back to 
represent a prefix



SSM States

KVs

NYC

NYC

NYC is

Request 1

a busy city

SSM States

KVs

is

NYC is

SSM States

KVs

a

NYC is a
SSM States

KVs…
city

NYC is a busy city

Cached
Prefix
Cache

Challenges with strawman

• Naive solution: checkpoint an SSM state 
every x tokens

9



SSM States

KVs

NYC

NYC

NYC is

Request 1

a busy city NYC is very

SSM States

KVs

is

NYC is

SSM States

KVs

a

NYC is a
SSM States

KVs…
city

NYC is a busy city

SSM States

KVs

NYC is

isNYC

Request 2

Cached
Prefix
Cache

Reused

SSM States

KVs

NYC

NYC

NYC is

Request 1

a busy city

SSM States

KVs

is

NYC is

SSM States

KVs

a

NYC is a
SSM States

KVs…
city

NYC is a busy city

Cached
Prefix
Cache

Challenges with strawman

• Naive solution: checkpoint an SSM state 
every x tokens

• Catch 1: cache entries are sparsely-hit

9



Challenges with strawman

• Naive solution: checkpoint an SSM state 
every x tokens

• Catch 1: cache entries are sparsely-hit

• Catch 2: cache entries are huge

9

A single token’s

SSM states KVs



Challenges with strawman

• Naive solution: checkpoint an SSM state 
every x tokens

• Catch 1: cache entries are sparsely-hit

• Catch 2: cache entries are huge
• Frequent cache thrashing & low hit rate

9

	� �
 ���
�����! ��%��#�"&���'

�

��

��

	�

�
��
�%
#��

$�
��

&$
��

��
�	
(

�
��
(

��
��
(

��$ �����%�%�$

A single token’s

SSM states KVs



Admission Eviction

Marconi: prefix caching for Hybrid LLMs

• Supports models with arbitrary layer compositions (Hybrid LLMs, pure 
Transformers, pure SSMs) 

• Shouldn’t focus solely on recency 

• Needs to be more judicious in admission and eviction! 

• Leverages unique characteristics of Hybrid LLMs

10

“Marconi plays the mamba, listen to the radio, don’t you remember?” — Lyrics of We Built This City, song by Starship



Admission Eviction

Aside from recency:

11



Admission Eviction
Forecasts prefixes’ reuse likelihoods

Aside from recency:

11



Admission Eviction

Judicious admission

• Existing systems: admit all states of most recent request 

• Marconi: admit states with high reuse likelihood only 

• Key insight 

• Future reuse patterns cannot be predicted… 

• …but can be sufficiently estimated through a taxonomy of potential prefix 
reusing scenarios!

12



Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

13



Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

1. Purely input: part of the input sequence 
from a prior request

• E.g., system prompts, few-shot examples

13

System Prompt

Few-shot Examples

Question 1 Output 1

System Prompt Question 2 Output 2

Few-shot ExamplesSystem Prompt Question 3 Output 3

Question 1 Answer 1

Chat History Question 2 Answer 2

Chat History Question 3 Answer 3

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Shareable Prefix Non-shareable LLM Output



Admission Eviction

Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

1. Purely input: part of the input sequence 
from a prior request

• E.g., system prompts, few-shot examples

2. Input and output: input+output 
sequence of a prior request

• E.g., conversation history for chatbots, 
past environment interactions for agents

13

System Prompt

Few-shot Examples

Question 1 Output 1

System Prompt Question 2 Output 2

Few-shot ExamplesSystem Prompt Question 3 Output 3

Question 1 Answer 1

Chat History Question 2 Answer 2

Chat History Question 3 Answer 3

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Shareable Prefix Non-shareable LLM Output



Admission Eviction

Different mechanisms for different cases

14

System Prompt

Few-shot Examples

Question 1 Output 1

System Prompt Question 2 Output 2

Few-shot ExamplesSystem Prompt Question 3 Output 3

Question 1 Answer 1

Chat History Question 2 Answer 2

Chat History Question 3 Answer 3

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Shareable Prefix Non-shareable LLM Output



Admission Eviction

Different mechanisms for different cases

• Purely input 

• Prefix shared by many requests 

• Can be observed by bookkeeping and 
comparing previous requests

14

System Prompt

Few-shot Examples

Question 1 Output 1

System Prompt Question 2 Output 2

Few-shot ExamplesSystem Prompt Question 3 Output 3

Question 1 Answer 1

Chat History Question 2 Answer 2

Chat History Question 3 Answer 3

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Shareable Prefix Non-shareable LLM Output



Admission Eviction

Different mechanisms for different cases

• Purely input 

• Prefix shared by many requests 

• Can be observed by bookkeeping and 
comparing previous requests

• Input and output 

• Conversations usually append to the 
last decoded token

14

System Prompt

Few-shot Examples

Question 1 Output 1

System Prompt Question 2 Output 2

Few-shot ExamplesSystem Prompt Question 3 Output 3

Question 1 Answer 1

Chat History Question 2 Answer 2

Chat History Question 3 Answer 3

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Shareable Prefix Non-shareable LLM Output



Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:

15



Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:

15

NYC is huge

SSM States

KVs

citya

NYC is a busy city
SSM States

KVs

huge

NYC is huge

busy

SSM States

KVs

isNYC

NYC is

NYC is busya cityRequest 1

Request 2

Prefill Decode



Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:

• Intermediates: purely-input prefixes

15

NYC is huge

SSM States

KVs

citya

NYC is a busy city
SSM States

KVs

huge

NYC is huge

busy

SSM States

KVs

isNYC

NYC is

NYC is busya cityRequest 1

Request 2

Prefill Decode



Admission Eviction

Request history bookkeeping

• Use a radix tree to represent past requests

• Nodes naturally represent high reuse 
likelihood:

• Intermediates: purely-input prefixes

• Leaves: input-and-output prefixes

15

NYC is huge

SSM States

KVs

citya

NYC is a busy city
SSM States

KVs

huge

NYC is huge

busy

SSM States

KVs

isNYC

NYC is

NYC is busya cityRequest 1

Request 2

Prefill Decode



Admission Eviction
Forecasts prefixes’ reuse likelihoods Considers compute savings hits deliver

Aside from recency:

16



Different memory-compute savings tradeoffs

• Unlike KVs, SSM states have fixed size regardless of sequence length or 
compute savings

17Admission Eviction

� ��� ���
��������������

�

�

�

	




�
��

���
��

��
��
���

���
�� ���������

���



Different memory-compute savings tradeoffs

• Unlike KVs, SSM states have fixed size regardless of sequence length or 
compute savings

• FLOP efficiency: compute savings per unit of memory of reusing a state 

17Admission Eviction

FLOP efficiency =
Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)

� ��� ���
��������������

�

�

�

	




�
��

���
��

��
��
���

���
�� ���������

���



� 
�� ���� �
�� ����
�� $���������#�

�

�

�

�

	

��
�
��
��
%�
��
�&

#�

��


�����
&�!��
�!��"��!��!

Admission Eviction

Different memory-compute savings tradeoffs

• Models with more SSM layers have 
more FLOP-efficient states

18

FLOP efficiency =
Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)



Admission Eviction

FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)

19

Utility = recency



Admission Eviction

FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)

• Marconi: also considers the potential compute savings

19

Utility = recency



Admission Eviction

FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)

• Marconi: also considers the potential compute savings

• Utility score: balances recency and FLOP efficiency

19

Utility = recency + α ⋅ flop_efficiencyUtility = recency



Evaluation

• NVIDIA Mamba2-Hybrid-7B with {4, 24, 28} {Attention, SSM, MLP} layers 

• Workloads: conversational (LMSys, ShareGPT) and agentic (SWEBench) 

• Metrics: token hit rate (%), Time To First Token (ms) 

• Large sweep of experiments with varying cache size and request arrival 
patterns

20



Marconi vs. fine-grained checkpointing

• Judicious admission improves the cache utility significantly 

• Average improvement in token hit rate: 4.5X, 7.3X, and 34.4X

21

	� 
� �� ��

�����������������

�����

�������

� 	� 
�

������������������

����

������

� 	� 
� �� ��

�����������������

�����

�������

LMSys ShareGPT SWEBench



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������

� 
�� ��� ��� 	��� 	
�� 	��� 	���
�����"���� !"���������!�

����

��
�

����

����

	���

�
�

�� ����
�������
�������



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������

� 
�� ��� ��� 	��� 	
�� 	��� 	���
�����"���� !"���������!�

����

��
�

����

����

	���

�
�

�� ����
�������
�������



Tradeoffs: FLOP-aware eviction vs. LRU

• Improves hit rate of longer sequences, which cost more FLOPs

22

	  
	 
 �	 � �	

��!%���������$������ ���#� 
��

	


	

�	
�
&
�
��
�$
��
�
$
�
��
��
��
�
�
�
��"� ���'��������

� 
�� ��� ��� 	��� 	
�� 	��� 	���
�����"���� !"���������!�

����

��
�

����

����

	���

�
�

�� ����
�������
�������

Bigger TTFT win for 
longer sequences!



Marconi

• First prefix caching system for models with arbitrary layer compositions 

• Evaluates cache entries not only on recency, but also: 

• Admission: prefixes’ reuse likelihoods 

• Eviction: compute savings that hits deliver 

• Source code available! https://github.com/ruipeterpan/marconi

23

“Marconi plays the mamba, listen to the radio, don’t you remember?” — Lyrics of We Built This City, song by Starship

https://github.com/ruipeterpan/marconi

