8 PRINCETON QWS
UNIVERSITY

Marconi: Prefix Caching for the Era
of Hybrid LLMs

Rui Pan, Zhuang Wang, Zhen Jia, Can Karakus, Luca Zancato, Tri Dao, Yida Wang, Ravi Netravali

MLSys 2025, Santa Clara, CA

Attention has bad long-context efficiency

Context Window Size (log scale)

=
-
(o)

o
-
U

=
o
N

Gemini 1.5 Pro @

Model Release Date

Gemini 1.5
O
Claude 2.1'
Claude 1.2 GaT-4 Turbo
O
Gemini 1.0
O
GﬁT—B.S Turbo
GPT-4
O
GPT-3
{1 @
2021 2022 2023 2024

Attention has bad long-context efficiency

Q: LxD K: LxD A = QKT: LxL

Sequence
Length

Attention Matrix

Attention has bad long-context efficiency

e Quadratic compute complexity

Q: LxD K: LxD A = QKT: LxL

Sequence
Length

Attention Matrix

Attention has bad long-context efficiency

e Quadratic compute complexity Attention

e Huge KV cache sizes (linear to sequence length) Computational |, 5,
Complexity

Inference-Time
Memory

Q: LxD K: LxD A= QK™: LxL

Seqguence
Length

Attention Matrix

Background: State Space Models (SSMs)

o Compress prior context into a state Attention
o Update states recurrently in-place C"C“;&‘glaet;?t';al ______________________ o)
Infel\t;leelzi-r';ime o(L)
Output S a busy
Input NYC IS a

SSM SSM (Unfolded)

Background: State Space Models (SSMs)

o Compress prior context into a state Attention | SSM
o Update states recurrently in-place C"C“;;‘lflaet;,‘;';al ______________________ ow) | oW
Infel\t;leelzi-r';ime o(L) 0(1)
Output S a busy
Input NYC IS a

SSM SSM (Unfolded)

Background: State Space Models (SSMs)

Attention | SSM

Computational ,
Complexity O(L?) OfL)
Inference-Time o(L) 0(1)

Memory

Background: State Space Models (SSMs)

¢ Memory consumption: Attention | SSM

o Fixed-sized regardless of num tokens Computational | 5 | o)
Complexity

Inference-Time
Memory

D

Attention
— SSM

W
|

Layer State Size (MB)
= N

)

0 100 200
4 Sequence Length

Background: State Space Models (SSMs)

¢ Memory consumption: Attention | SSM

o Fixed-sized regardless of num tokens Computational | 5 | o)
Complexity

e Generally smaller than whole sequences’ Kvs ~ ™{Feetime | on) | o)

D

Attention
— SSM

W
|

Layer State Size (MB)
= N

)

0 100 200
4 Sequence Length

Background: State Space Models (SSMs)

¢ Memory consumption: Attention | SSM
e Fixed-sized regardless of num tokens Computational | ;. | o
_ Complexity |
' Inference-Time
e Generally smaller than whole sequences’ KVs Memory o) | o)
e Orders of magnitude larger than a single 4- ATEeTToN
token’s KVs —— SSM

W
|

Layer State Size (MB)
= N

)

0 100 200
4 Sequence Length

Background: Attention-SSM Hybrid LLMs

e A few Attention layers + many SSM layers

e Balances efficiency and language modeling

capability

Attention

Attention
Attention

Transformers

Background: Attention-SSM Hybrid LLMs

e A few Attention layers + many SSM layers

e Balances efficiency and language modeling

capability

MINIMAX

AI21 Iabs (J I-l'-lel.lrl,')cyelfl-'atn Transformers

Attention
Attention

Attention

Background: Attention-SSM Hybrid LLMs

Attention
Attention

Attention
Attention

Transformers

Background: Attention-SSM Hybrid LLMs

! f !
Attention SSM Attention
Attention SSM SSM
Model Architectures
Attention SSM SSM
f f f
Transformers SSMs Hybrid Models
Request 1
You are ChatGPT, an LLM ... | Cached
E t' R t' User input: |
Xecu IO n u n I l I Ies Help me fix this code: ... Model States
You | are | Chat| GPT
Request 2 an | - (et
You are ChatGPT, an LLM ... |__ .
User input: Reused CP;?;"); g
Where is MLSys this year?

“"Models == Transformers”

Background: Attention-SSM Hybrid LLMs

Request 1

You are ChatGPT, an LLM ... | Cached
User input: l

Help me fix this code: ... (Model States

You | are | Chat | GPT
an ==« |input:

Request 2

You are ChatGPT, an LLM ... |_
User input: Reused

Where is MLSys this year?

6

Background: prefix caching

e Reuses model states (KVs, SSM states) of common prefixes across requests

e Reduces Time To First Token (TTFT)

Request 1

You are ChatGPT, an LLM ... | Cached
User input: l

Help me fix this code: ... (Model States

You | are | Chat| GPT
an ==« |input:

Request 2

You are ChatGPT, an LLM ... |,
User input: Reused

Where is MLSys this year?

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache

NYC| is | a |busy]city

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

KV Cache

el s [5

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix
SSM States

1S
NYC

NYC

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix
SSM States

1S a

NYC IS

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

SSM States
IS a
Previous state / .
NYC IS

was overwritten!

Core challenge

e Prefix caching is challenging for SSMs: states can't be rolled back to
represent a prefix

SSM States
IS a busy
Previous state / .
NYC IS a

was overwritten!

SSM'’s modeling win complicates their systems win!

8

Challenges with strawman

Request 1

NYC | is a | busy| city

e Naive solution: checkpoint an SSM state

. \ \ \ \ 4 \ \
eve ry X tO ke n S (SSM States h (SSM States h
NYC NYC is
KVs KVs
NYC [
(SSM States A (SSM States
NYC is a NYC is a busy city
KVs """ | KVs C h d ~.4 PreﬁX
: —(_Cached —»
t
LY) \~ Cache

Challenges with strawman

e Naive solution: checkpoint an SSM state
every x tokens

e Catch 1: cache entries are sparsely-hit

Request 2

NYC

IS | very

A

KVs
NYC

(SSM States

NYC is a

KVs
d

Request 1
NYC | is busy | city
, . \ \ Y y_
(SSM States h (SSM States h
NYC NYC is

KVs

(SSM States

NYC is a busy city

"" | KVs

City

(SSM States

NYC is

KVs

NYC is

}

Reused

)-—Cached—>§='4

-

I
Prefix
Cache

Challenges with strawman

A single token’s

e Naive solution: checkpoint an SSM state
every x tokens

e Catch 1: cache entries are sparsely-hit

® Catch 2: cache entries are huge SSM states KVs

Challenges with strawman

A single token’s

e Naive solution: checkpoint an SSM state
every x tokens

e Catch 1: cache entries are sparsely-hit

[]
® Catch 2: cache entries are huge SSM states KVs

B KVs SSM States

e Frequent cache thrashing & low hit rate

W
)

-
o

% Entries Reused
N
(@)
11.1X%

65.3X
27.9X%

-

32 64 128
9 Checkpoint Frequency

Marconi: prefix caching for Hybrid LLMs

e Supports models with arbitrary layer compositions (Hybrid LLMs, pure
Transformers, pure SSMs)

e Shouldn’t focus solely on recency
e Needs to be more judicious in admission and eviction!

e Leverages unique characteristics of Hybrid LLMs

10

Aside from recency:

Admission

Aside from recency:

Admission

Forecasts prefixes' reuse likelihoods

Judicious admission

e Existing systems: admit all states of most recent request
e Marconi: admit states with high reuse likelihood only
e Key insight

e Future reuse patterns cannot be predicted...

e ...but can be sufficiently estimated through a taxonomy of potential prefix
reusing scenarios!

Admission 12

Taxonomy of prefix reusing patterns

e Composition of all reused prefixes:

Admission

Taxonomy of prefix reusing patterns

e Composition of all reused prefixes:

1.

Purely input: part of the input sequence

from a prior request

Admission

e E.g., system prompts, few-shot examples

13

[Shareable Prefix] [Non-shareable] [LLM Output]

System Prompt Question 1]—[Output 1]

System Prompt Few-shot Examples Question 2 { Output 2 |

System Prompt Few-shot Examples Question 3 —[Output 3 |

(a) System prompt and few-shot prompting

Taxonomy of prefix reusing patterns

e Composition of all reused prefixes:

1. Purely input: part of the input sequence
from a prior request

e E.g., system prompts, few-shot examples

2. Input and output: input+output
sequence of a prior request

e E.g., conversation history for chatbots,
past environment interactions for agents

Admission 13

[Shareable Prefix] [Non-shareable] [LLM Output]

System Prompt

: Question 1]—[Output 1]

System Prompt

Few-shot Examples

Question 2 { Output 2 |

System Prompt

Few-shot Examples

Question 3 —{ Output 3 |

(a) System prompt and few-shot prompting

Question 1 H Answer 1 |

Chat History

—[Question 2]—[Answer 2]

Chat History

]—[Question 3]—[Answer 3]

(b) Multi-turn conversation (e.g., ChatGPT)

Different mechanisms for different cases

Admission

14

[Shareable Prefix] [Non-shareable] [LLM Output]

System Prompt

: Question 1]—[Output 1]

System Prompt

Few-shot Examples

Question 2 Output 2

System Prompt

Few-shot Examples

Question 3 Output 3

(a) System prompt and few-shot prompting

Question 1]—[Answer 1

Chat History

—[Question 2]—[Answer 2]

Chat History

]—[Question 3]—[Answer 3]

(b) Multi-turn conversation (e.g., ChatGPT)

Different mechanisms for different cases

e Purely input

e Prefix shared by many requests

e Can be observed by bookkeeping and

comparing previous requests

Admission

14

[Shareable Prefix] [Non

-shareable] [LLM Output]

System Prompt

System Prompt

Few-shot Examples

Question 2 l Output 2 |

System Prompt

Few-shot Examples

Question 3 —{ Output 3 |

(a) System prompt and few-shot prompting

nnnnn

(b) Multi-turn conversation (e.g., ChatGPT)

Different mechanisms for different cases

e Purely input
e Prefix shared by many requests

e Can be observed by bookkeeping and
comparing previous requests

e Input and output

e Conversations usually append to the
last decoded token

Admission 14

[Shareable Prefix] [Non-shareable] [LLM Output]

System Prompt Question 1]—[Output 1]

System Prompt Few-shot Examples Question 2

System Prompt Few-shot Examples Question 3 —{ Output 3 |

(a) System prompt and few-shot prompting

(b) Multi-turn conversation (e.g., ChatGPT)

Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

Admission 15

Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

Admission

15

Prefill Decode
Request 1 [NYC | is a | busy| city
\
Request 2 [NYC | is |huge
(SSM States
NYC is
KVs
NYC IS
(SSM States) ([SSM States
NYC is a busy city NYC is huge
KVs KVs
a busy | city huge

Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

e Intermediates: purely-input prefixes

Admission

15

Request 1 | NYC

Request 2 | NYC

\ (SSM States

(SSM States

KVs

Prefill Decode
S a |busy| city
\/
is | huge
NYC is
KVs
NYC IS
) ([SSM States
NYC is a busy city NYC is huge
KVs
a busy | city huge

Request history bookkeeping

e Use a radix tree to represent past requests

e Nodes naturally represent high reuse
likelihood:

e Intermediates: purely-input prefixes

e Leaves: input-and-output prefixes

Admission

Request 1 | NYC

Request 2 | NYC

\ (SSM States

(SSM States

KVs

Prefill Decode
S a |busy| city
\/
is | huge
NYC is
KVs
NYC IS
) ([SSM States
NYC is a busy city NYC is huge
KVs
a busy | city huge

Aside from recency:

Admission Eviction

Forecasts prefixes’ reuse likelihoods Considers compute savings hits deliver

Different memory-compute savings tradeoffs

e Unlike KVs, SSM states have fixed size regardless of sequence length or
compute savings

N

Attention
—_— SSM

— N W
1 1 1

Layer State Size (MB)

o

0 100 200
Sequence Length

17

Eviction

Different memory-compute savings tradeoffs

e Unlike KVs, SSM states have fixed size regardless of sequence length or
compute savings

e FLOP efficiency: compute savings per unit of memory of reusing a state

m 41 Attention
—_— SSM

e (M
W

Layer State Siz

o [N

0 100 200
Sequence Length

Total FLOPs across layers (Attn, SSM, MLP)

FLOP efficency = ——8M MMM
Memory consumption of all states (KVs, SSM States)

1 Eviction

Different memory-compute savings tradeoffs

4_1e5
e Models with more SSM layers have 0 Mamba
. . 3 e Hybrid
more FLOP-efficient states i)
O === Transformer
Q
> 2
o (7 Laess=ss
7 B) UPPRTEELLL R
2 1 e
—l
LL IR < N R S
04~
0 500 1000 1500 2000

Sequence Length

Total FLOPs across layers (Attn, SSM, MLP)

FLOP efficency=—0m8 —— M — 11
Memory consumption of all states (KVs, SSM States)

18 Eviction

FLOP-aware eviction policy

e Existing systems: recency-focused (i.e., evict using LRU)

Utility = recency

Eviction

FLOP-aware eviction policy

e Existing systems: recency-focused (i.e., evict using LRU)

e Marconi: also considers the potential compute savings

Utility = recency

19 Eviction

FLOP-aware eviction policy

e Existing systems: recency-focused (i.e., evict using LRU)
e Marconi: also considers the potential compute savings

e Utility score: balances recency and FLOP efficiency

Utility = recency + o - flop_efficiency

19 Eviction

Evaluation

e NVIDIA Mamba2-Hybrid-7B with {4, 24, 28} {Attention, SSM, MLP} layers
e Workloads: conversational (LMSys, ShareGPT) and agentic (SWEBench)
o Metrics: token hit rate (%), Time To First Token (ms)

e Large sweep of experiments with varying cache size and request arrival
patterns

20

Marconi vs. fine-grained checkpointing

e Judicious admission improves the cache utility significantly

e Average improvement in token hit rate: 4.5X, 7.3X, and 34.4X

Marconi -

VLLM+ -

10

20 30
Token Hit Rate (%)

LMSys

40

Marconi -

VLLM+ -

0

20 40 60
Token Hit Rate (%)

ShareGPT

21

30

Marconi -

VLLM+ -

20 40
Token Hit Rate (%)

SWEBench

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

N
o

Avg Hit Rate Diff (%)
=
o

o

0 5 10 15 20 25 30
Sequence Length (# Tokens) le3

22

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

N
o

Avg Hit Rate Diff (%)
=
o

o

0 5 10 15 20 25 30
Sequence Length (# Tokens) le3

22

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

N
o

Avg Hit Rate Diff (%)
=
o

o

0 5 10 15 20 25 30
Sequence Length (# Tokens) le3

22

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

S
— B Marconi — SGLang+
= 20-
a
5
T 10-
=
o Or--—----- _
0 5 10 15 20 25 30
Sequence Length (# Tokens) le3
1.00 | T eEE———
—— Marconi TS
0-75 T eeanas SG La ng+ “““‘_’_.;:’,./
a -—- Vanilla T
O . R
5 0.50 e |
025' | "’4”, RS
0.00- ,»—5:' . | |
0 250 500 750 1000 1250 1500 1750

Time to First Token (ms)
22

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

S
— B Marconi — SGLang+
= 20-
a
5
T 10-
=
o Or--—----- _
0 5 10 15 20 25 30
Sequence Length (# Tokens) le3
1.00 | T eEE———
—— Marconi TS
0-75 T eeanas SG La ng+ “““‘_’_.;:’,./
a -—- Vanilla T
O . R
5 0.50 e |
025' | "’4”, RS
0.00- ,»—5:' . | |
0 250 500 750 1000 1250 1500 1750

Time to First Token (ms)
22

Tradeoffs: FLOP-aware eviction vs. LRU

e Improves hit rate of longer sequences, which cost more FLOPs

S
- B Marconi — SGLang+
= 20+
e
3
S 10
:':I::‘
o O---=----
0 5 10 15 20 25 30
Sequence Length (# Tokens) le3
1.00 - e T r———— . .
—— Marconi --"“'3::::;1;— Bigger TTFT win for
0.759 oo SGLang+ Pt longer sequences!
E 0.501 =~~~ Vanilla ‘_‘-*"""1”,
O - "’;r"' i
025 | ”;’/’ el
0.001 &=="7"
0 250 500 750 1000 1250 1500 1750

Time to First Token (ms)
22

[1| VET | NOV |}
TES | TAM
1| EN | TVM|[]

R PRINCETON QWS

UNIVERSITY

Marconi

e First prefix caching system for models with arbitrary layer compositions
e Evaluates cache entries not only on recency, but also:
e Admission: prefixes' reuse likelihoods

e Eviction: compute savings that hits deliver

e Source code available! https://github.com/ruipeterpan/marconi

. [|
o,
— i
“Marconi plays the mamba, listen to the radio, don't you remember?” — Lyrics of We Built This City, song by Starship E i.%
el

23

https://github.com/ruipeterpan/marconi

