

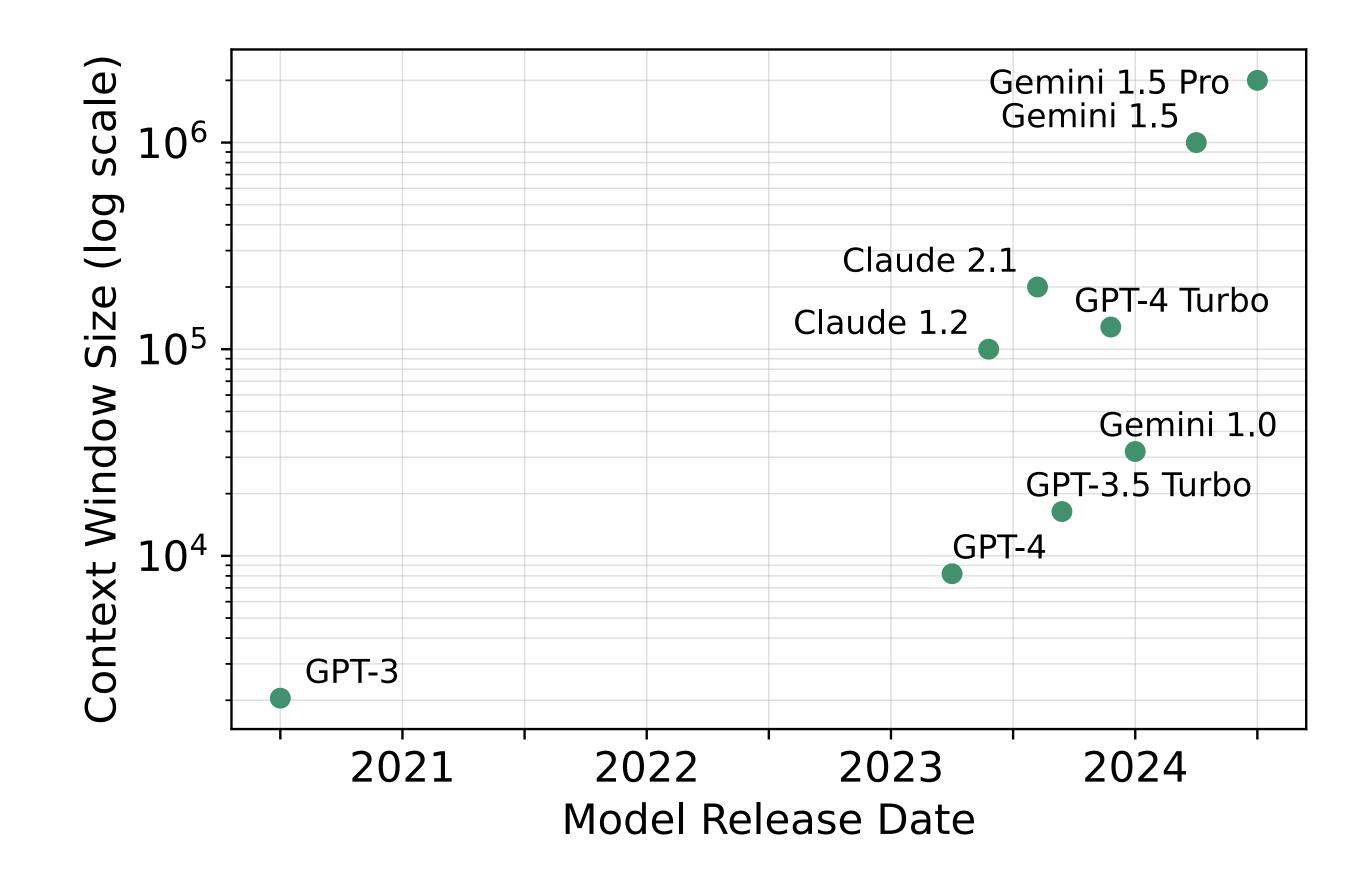
Marconi: Prefix Caching for the Era of Hybrid LLMs

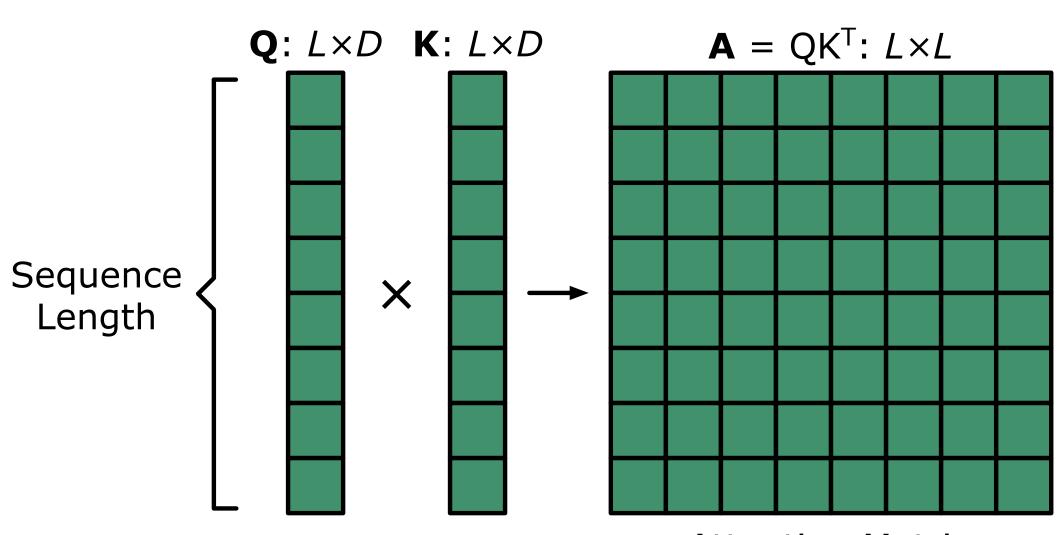
Rui Pan, Zhuang Wang, Zhen Jia, Can Karakus, Luca Zancato, Tri Dao, Yida Wang, Ravi Netravali

MLSys 2025, Santa Clara, CA

Outstanding Paper Honorable Mention!

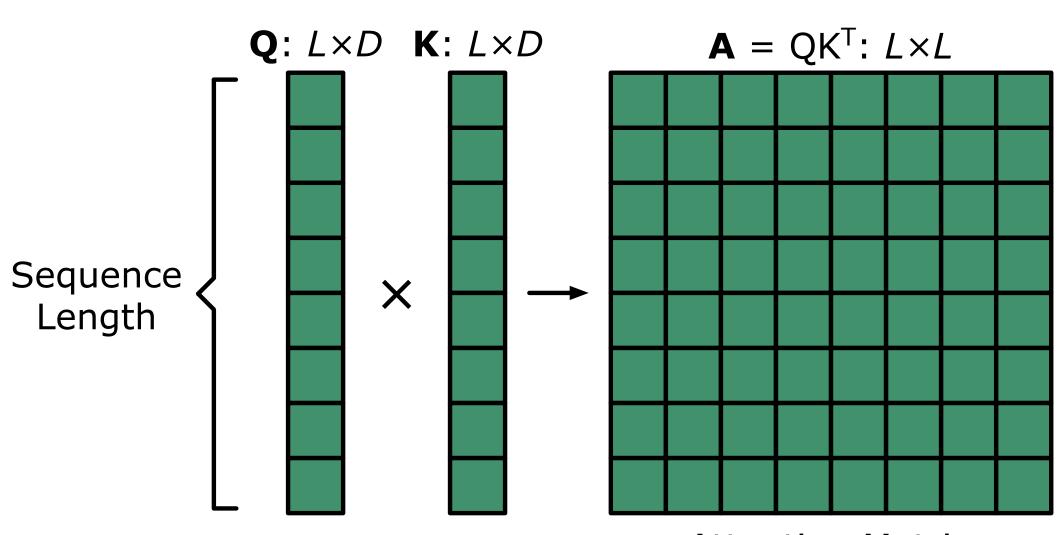
n!





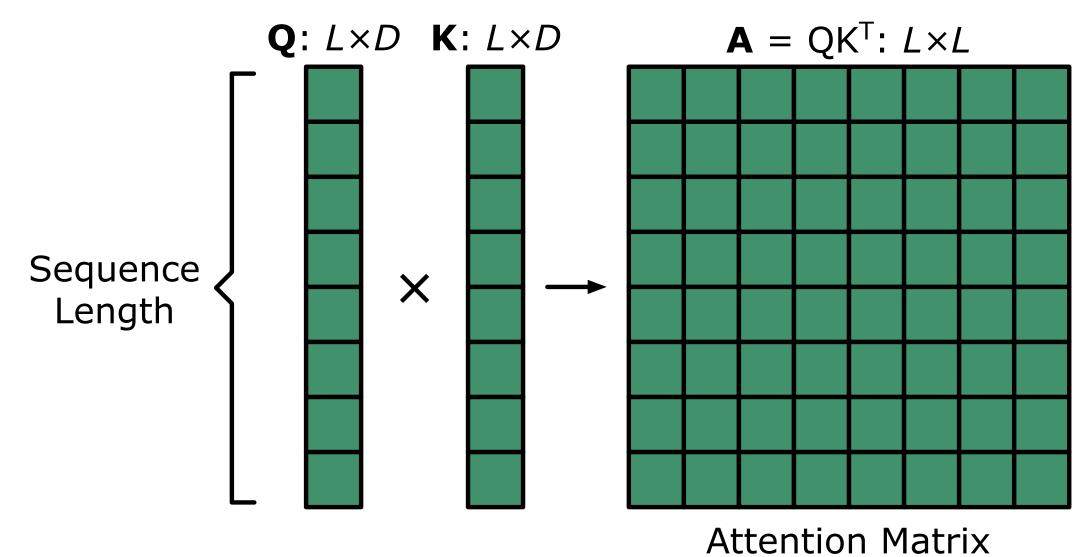
Attention Matrix

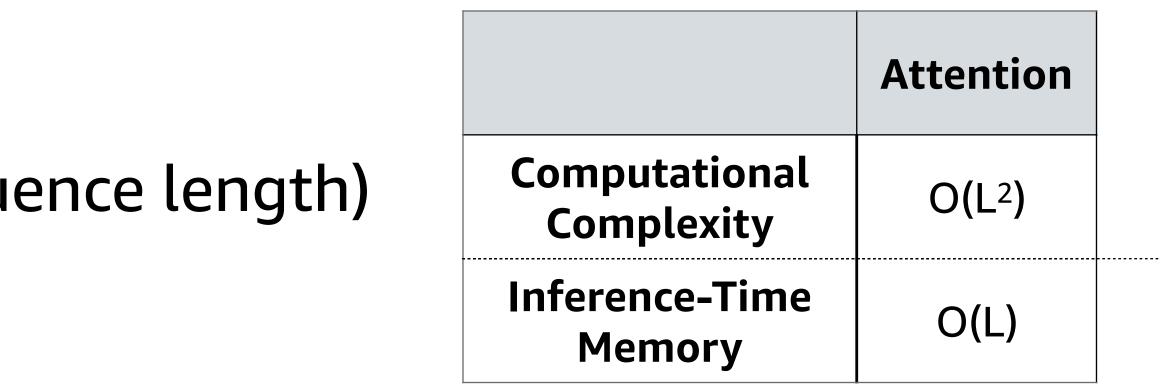
• Quadratic compute complexity



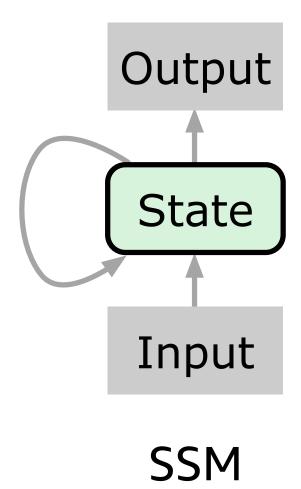
Attention Matrix

- Quadratic compute complexity
- Huge KV cache sizes (linear to sequence length)

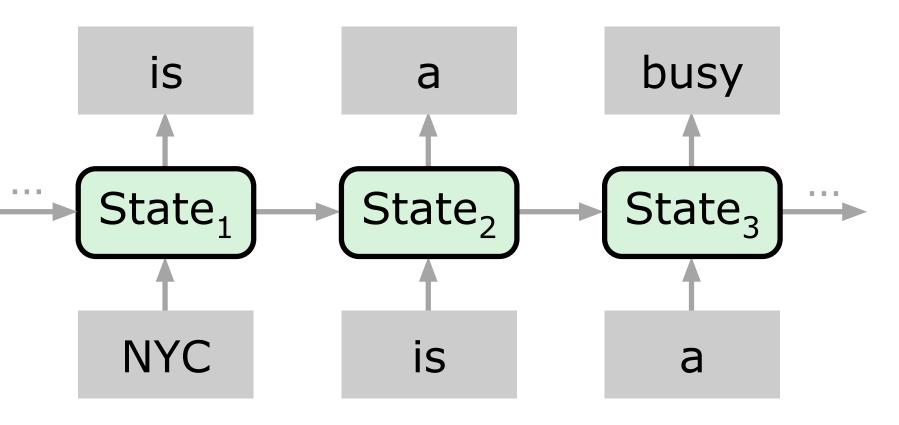




- Compress prior context into a state
- Update states recurrently in-place

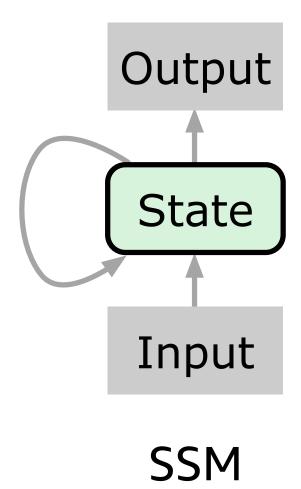


	Attention	
Computational Complexity	O(L ²)	
Inference-Time Memory	O(L)	

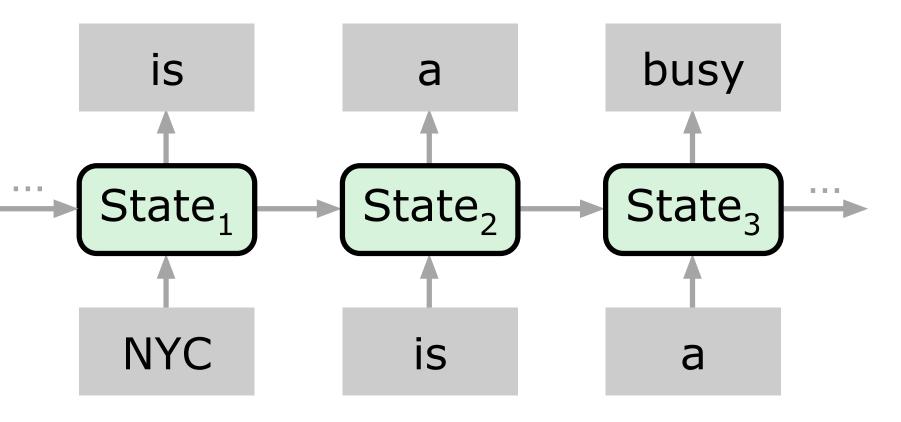


SSM (Unfolded)

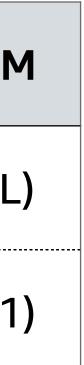
- Compress prior context into a state
- Update states recurrently in-place



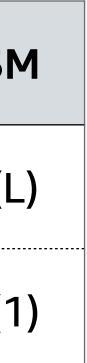
e		Attention	SSN
	Computational Complexity	O(L ²)	O(L
	Inference-Time Memory	O(L)	O(1



SSM (Unfolded)

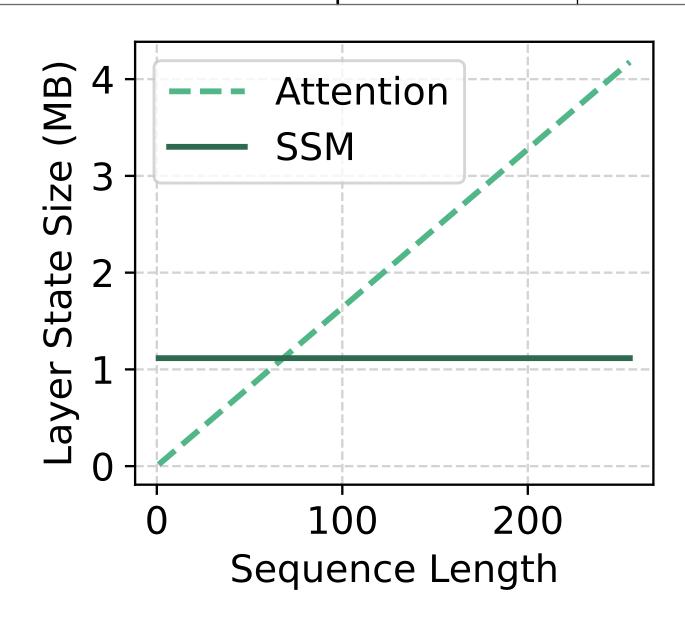


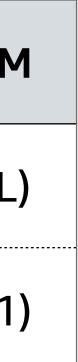
	Attention	SSN
Computational Complexity	O(L ²)	O(L
Inference-Time Memory	O(L)	O(1



- Memory consumption:
 - Fixed-sized regardless of num tokens

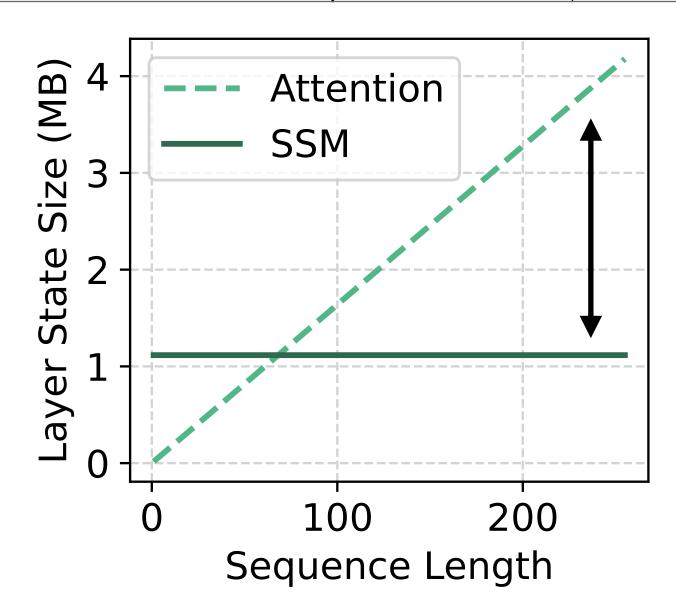
	Attention	SSN
Computational Complexity	O(L ²)	O(L
Inference-Time Memory	O(L)	O(1

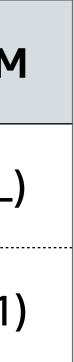




- Memory consumption:
 - Fixed-sized regardless of num tokens
 - Generally smaller than whole sequences' KVs

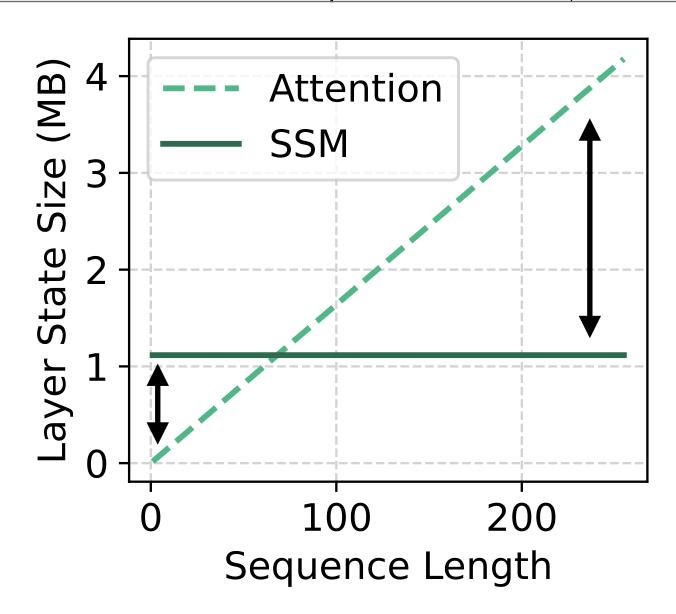
	Attention	SSM
Computational Complexity	O(L ²)	O(L
Inference-Time Memory	O(L)	O(1

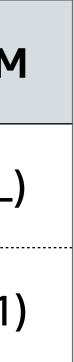




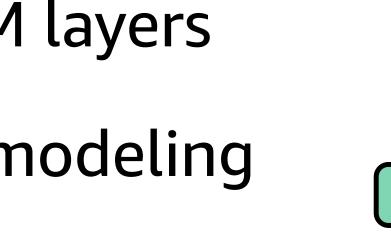
- Memory consumption:
 - Fixed-sized regardless of num tokens
 - Generally smaller than whole sequences' KVs
 - Orders of magnitude larger than a **single** token's KVs

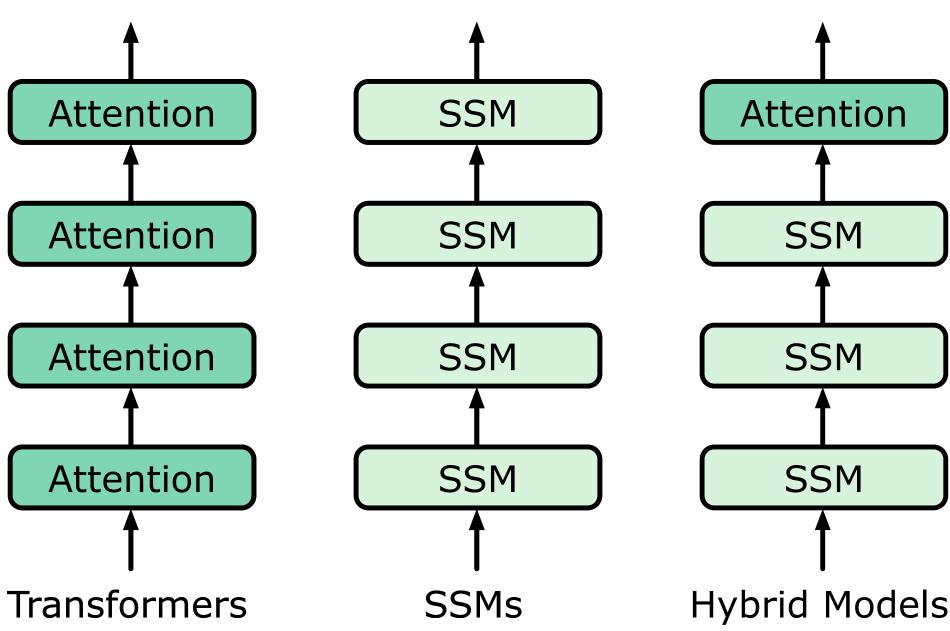
	Attention	SSM
Computational Complexity	O(L ²)	O(L
Inference-Time Memory	O(L)	O(1





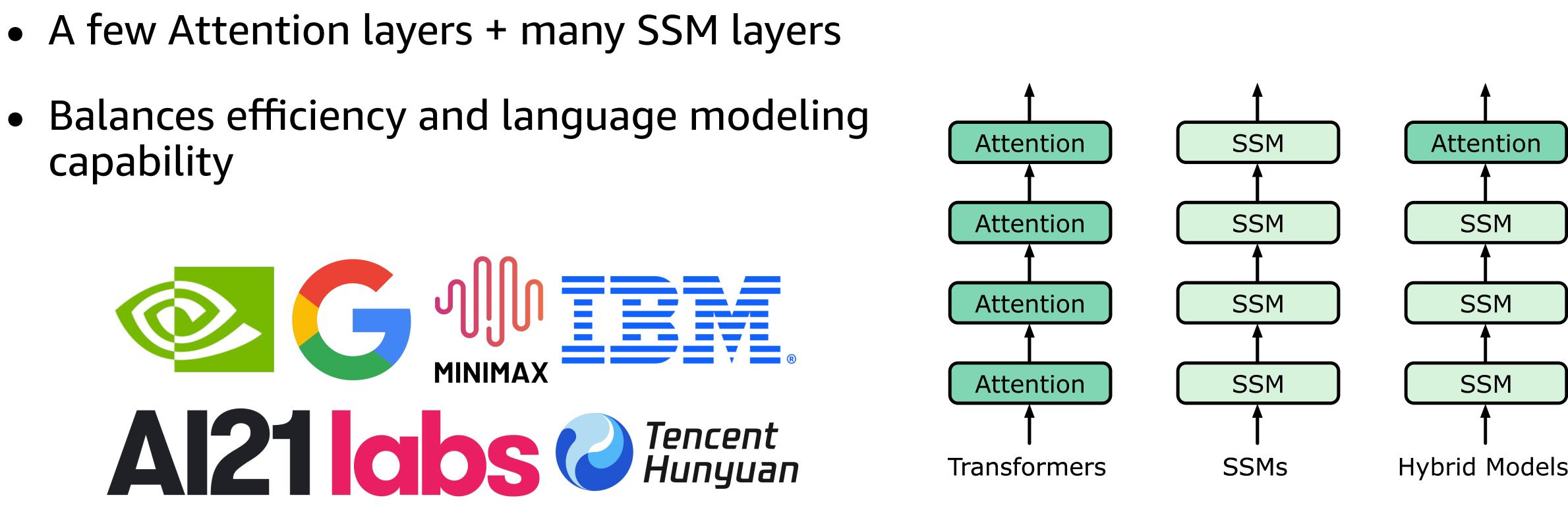
- A few Attention layers + many SSM layers
- Balances efficiency and language modeling capability



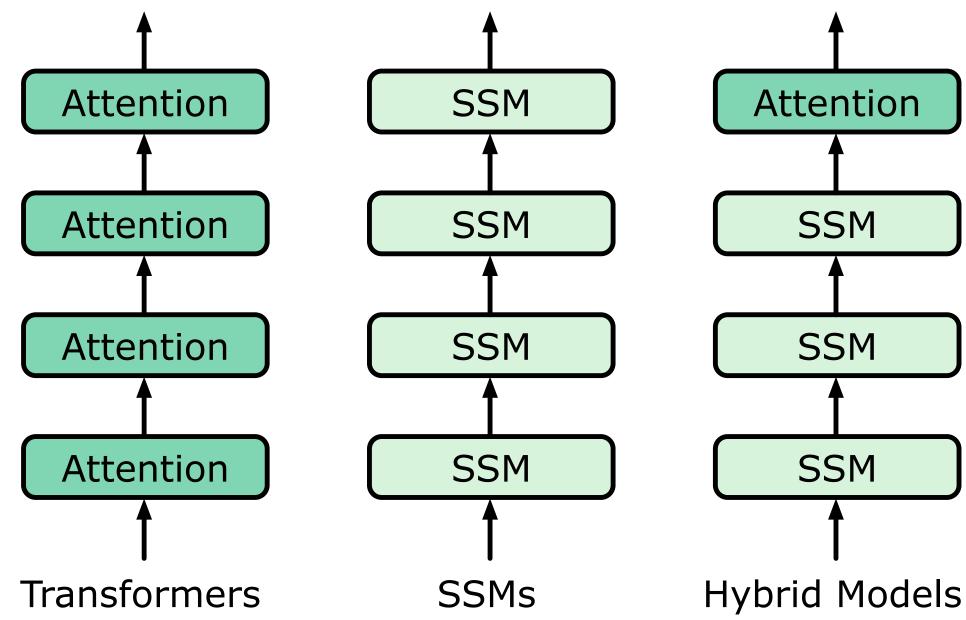


tion)
Ŋ)
Ŋ	
Ŋ	
lode	

- capability



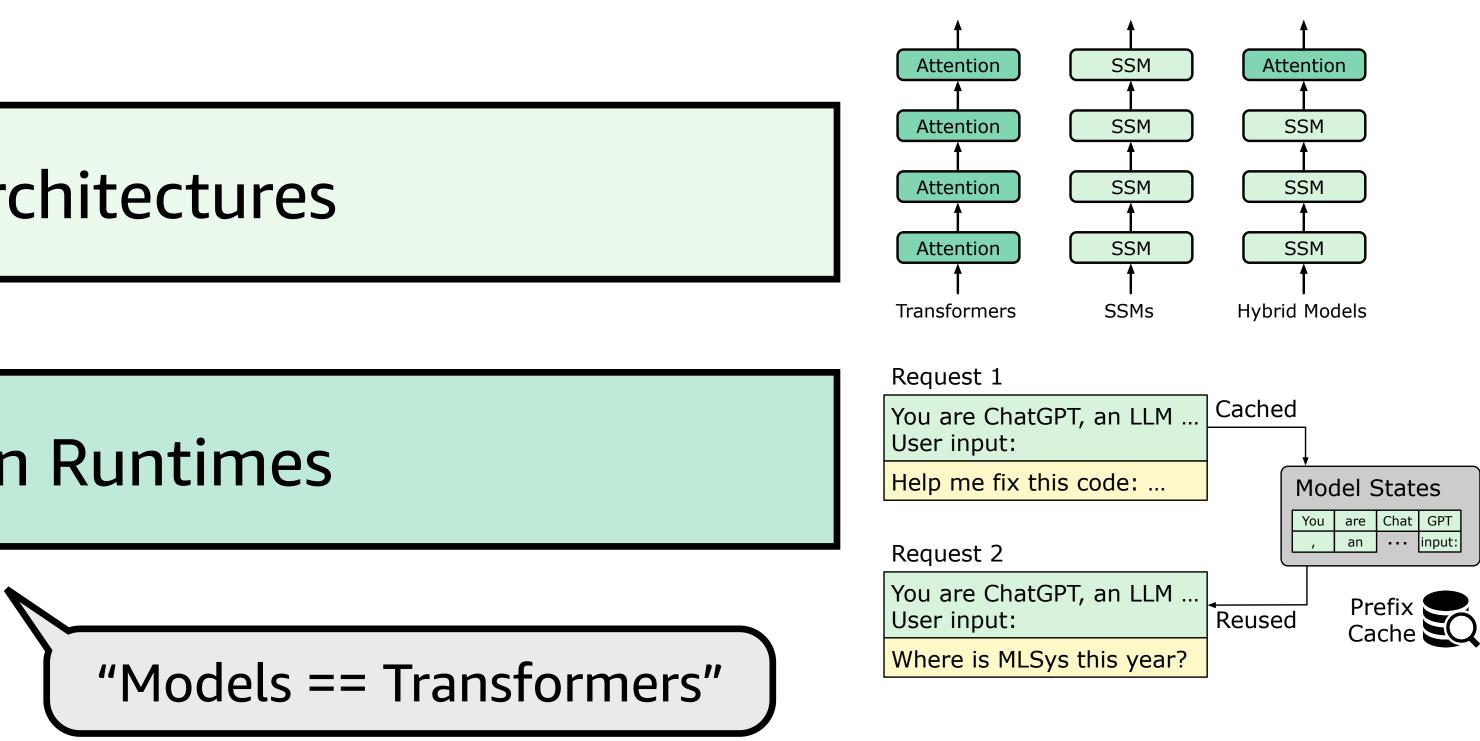
tion	
Ŋ)
Ŋ	
Ŋ	
lode	



ion	
1	
1	
1	ר
ode	

Model Architectures

Execution Runtimes



Request 1

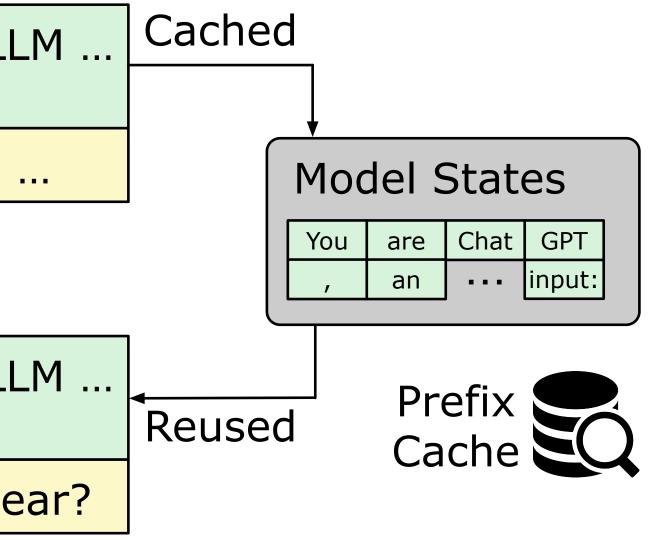
You are ChatGPT, an LLM ... User input:

Help me fix this code: ...

Request 2

You are ChatGPT, an LLM ... User input:

Where is MLSys this year?



Background: prefix caching

- Reduces Time To First Token (TTFT)

Request 1

You are ChatGPT, an LLM ... User input:

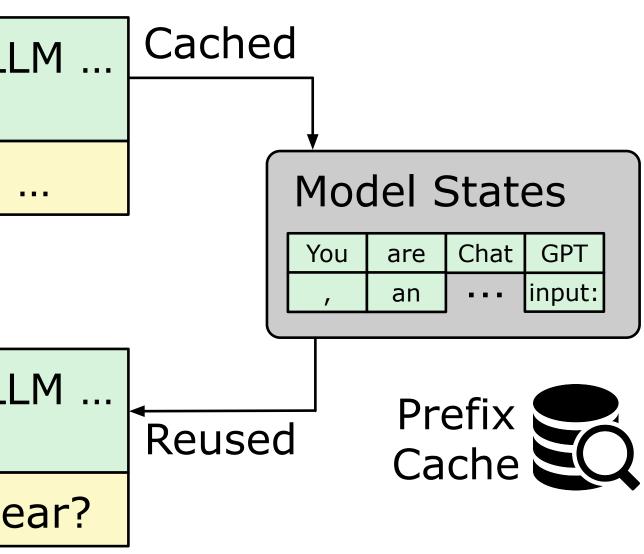
Help me fix this code: ...

Request 2

You are ChatGPT, an LLM ... User input:

Where is MLSys this year?

• Reuses model states (KVs, SSM states) of common prefixes across requests



• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix

KV Cache

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix

KV Cache

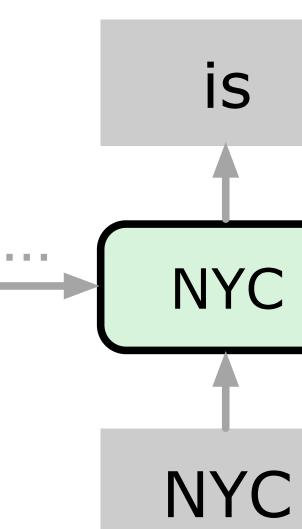
а	busy	city

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix

KV Cache

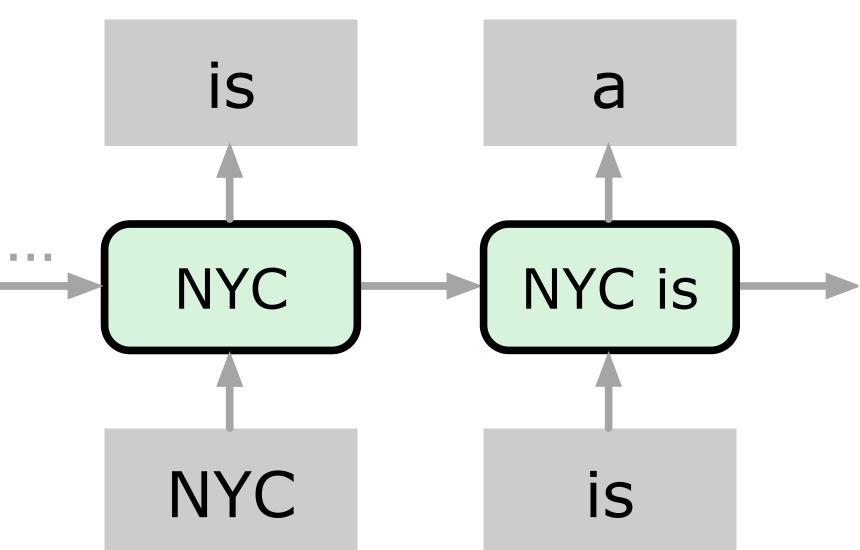
a

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix



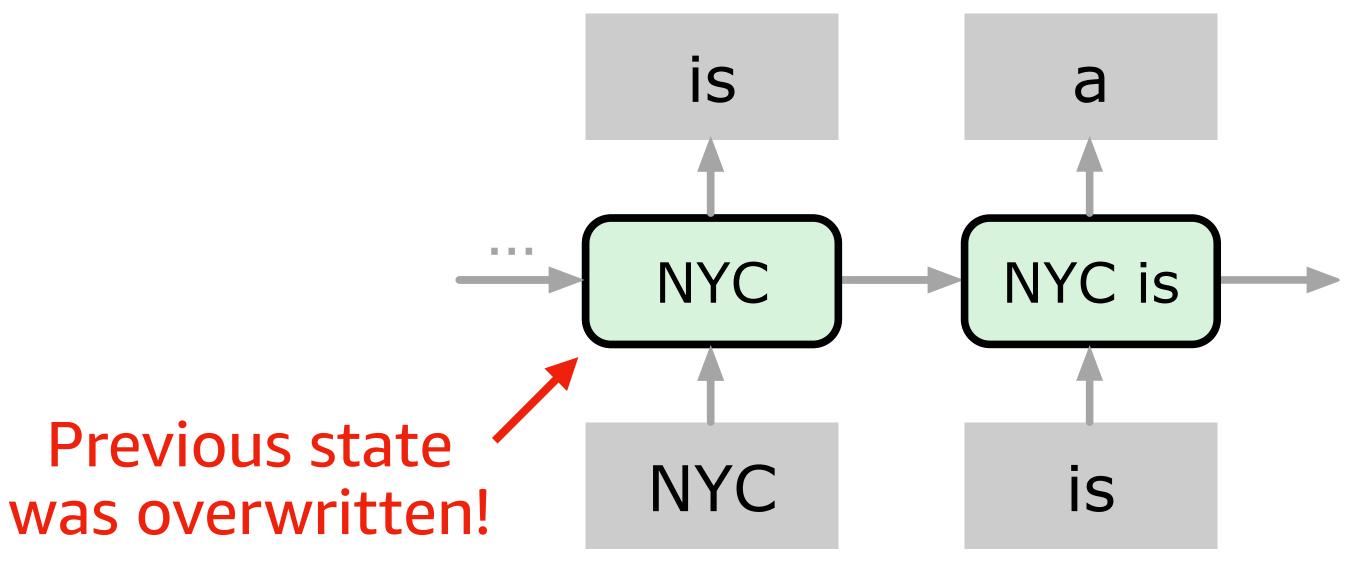
SSM States

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix



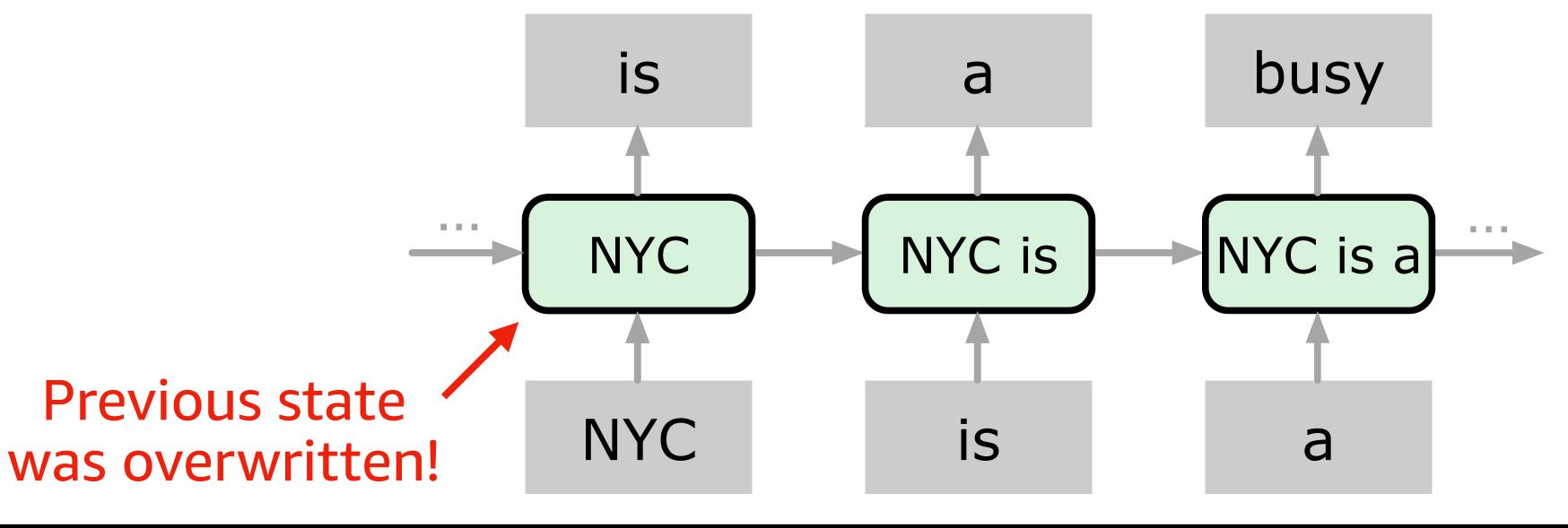
SSM States

• Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix



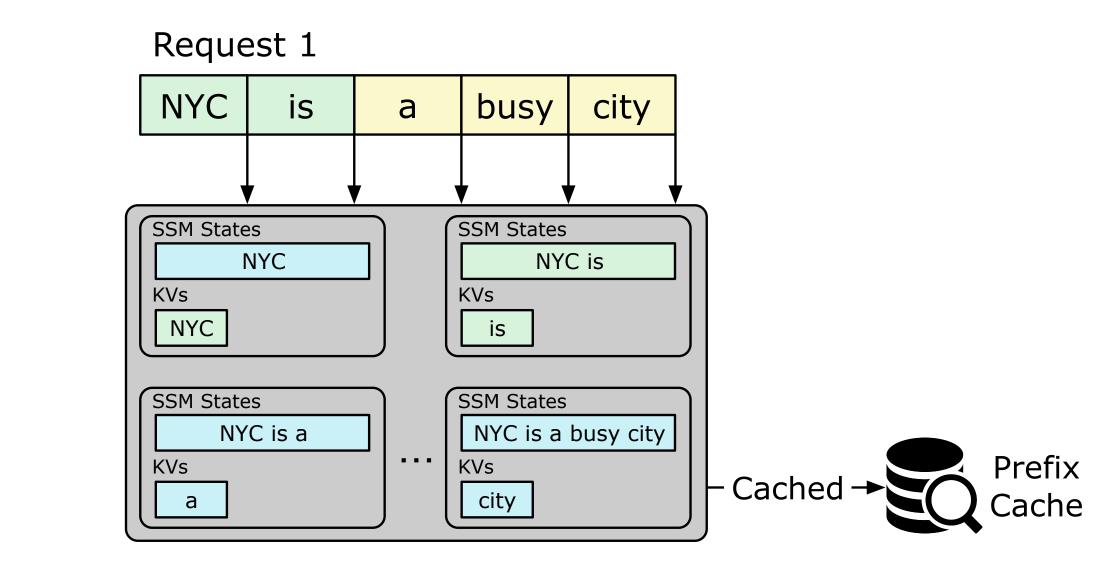
SSM States

 Prefix caching is challenging for SSMs: states can't be rolled back to represent a prefix

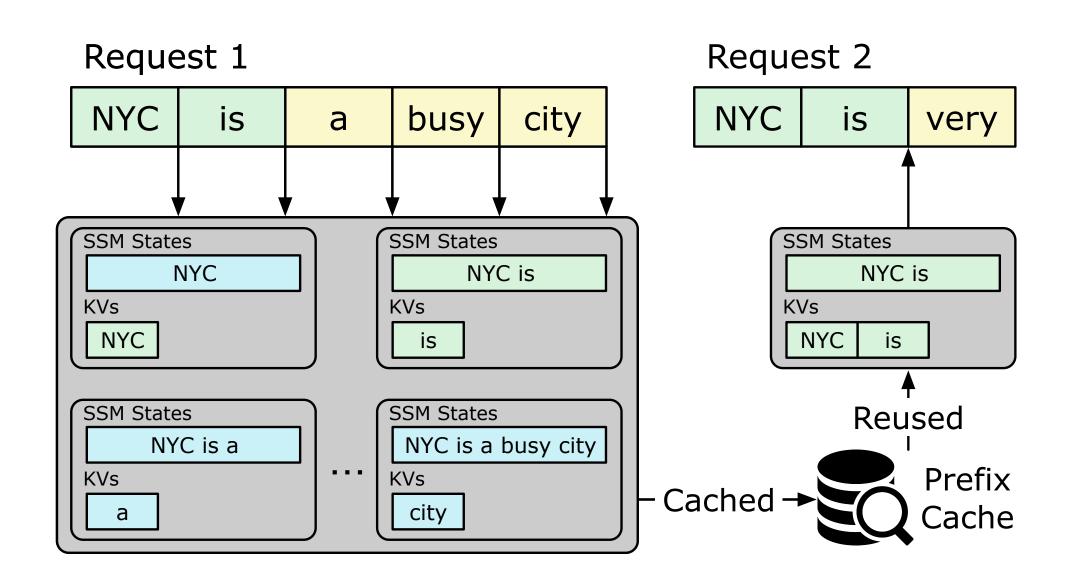


SSM's modeling win complicates their systems win!

• Naive solution: checkpoint an SSM state every x tokens

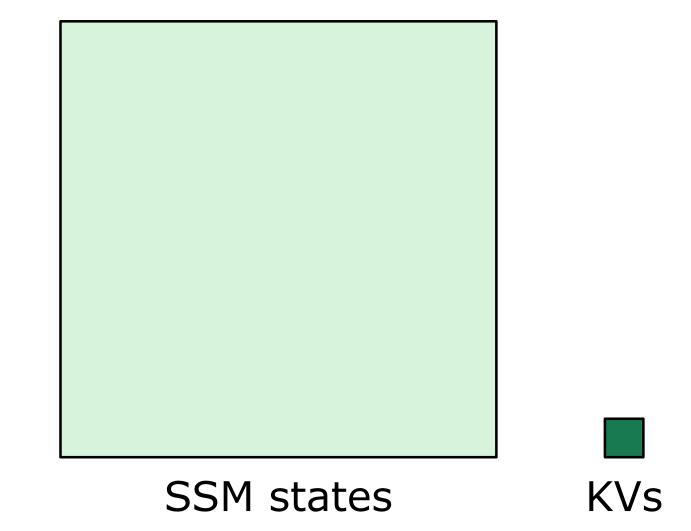


- Naive solution: checkpoint an SSM state every x tokens
- Catch 1: cache entries are sparsely-hit



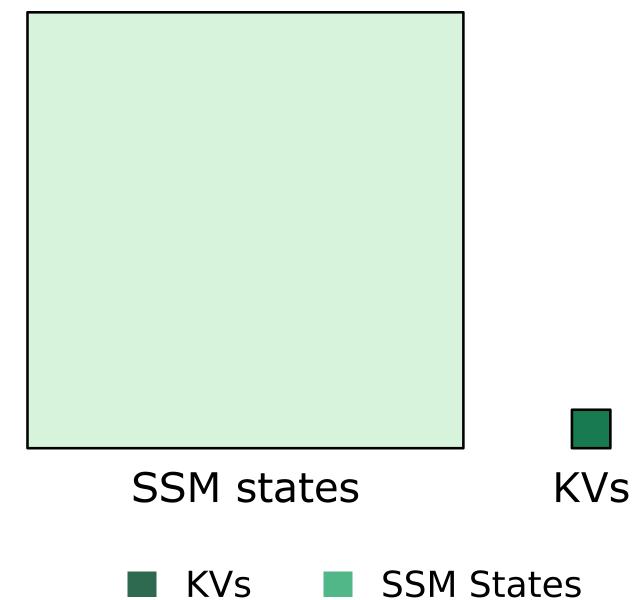
- Naive solution: checkpoint an SSM state every x tokens
- Catch 1: cache entries are sparsely-hit
- Catch 2: cache entries are huge

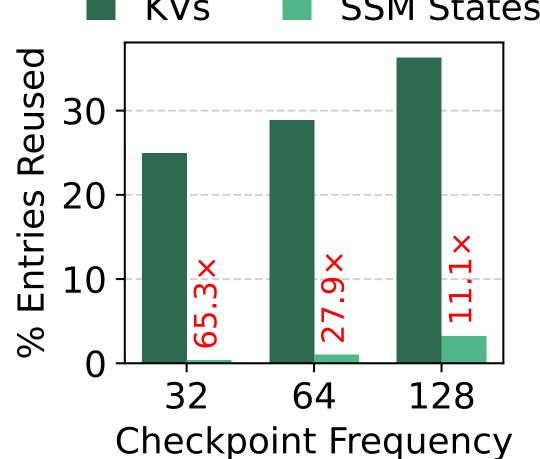
A single token's



- Naive solution: checkpoint an SSM state every x tokens
- Catch 1: cache entries are sparsely-hit
- Catch 2: cache entries are huge
- Frequent cache thrashing & low hit rate

A single token's





Marconi: prefix caching for Hybrid LLMs

- Supports models with arbitrary layer compositions (Hybrid LLMs, pure Transformers, pure SSMs)
- Shouldn't focus solely on recency
 - Needs to be more judicious in admission and eviction!
- Leverages unique characteristics of Hybrid LLMs

"Marconi plays the mamba, listen to the radio, don't you remember?" — Lyrics of We Built This City, song by Starship

Admission

Aside from recency:

Admission

Eviction

Aside from recency:

Admission

Forecasts prefixes' reuse likelihoods

Eviction

Judicious admission

- Existing systems: admit <u>all</u> states of most recent request
- Marconi: admit states with <u>high reuse likelihood only</u>
- Key insight
 - Future reuse patterns cannot be predicted...
 - reusing scenarios!

• ...but can be sufficiently estimated through a taxonomy of potential prefix

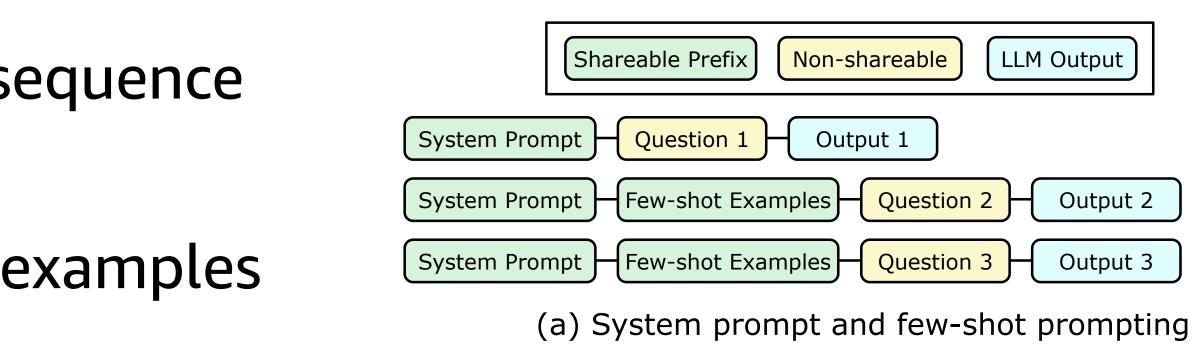
Taxonomy of prefix reusing patterns

• Composition of all reused prefixes:

Admission

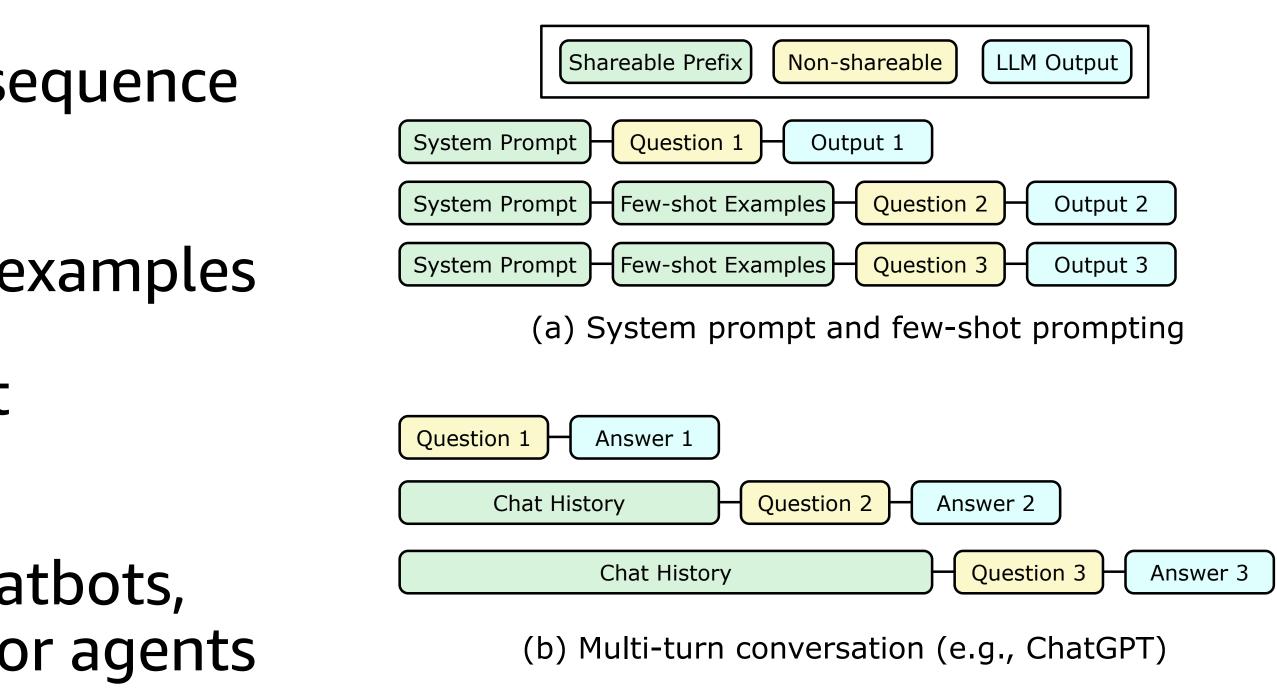
Taxonomy of prefix reusing patterns

- Composition of all reused prefixes:
 - 1. **Purely input**: part of the input sequence from a prior request
 - E.g., system prompts, few-shot examples



Taxonomy of prefix reusing patterns

- Composition of all reused prefixes:
 - 1. **Purely input**: part of the input sequence from a prior request
 - E.g., system prompts, few-shot examples
 - 2. Input and output: input+output sequence of a prior request
 - E.g., conversation history for chatbots, past environment interactions for agents

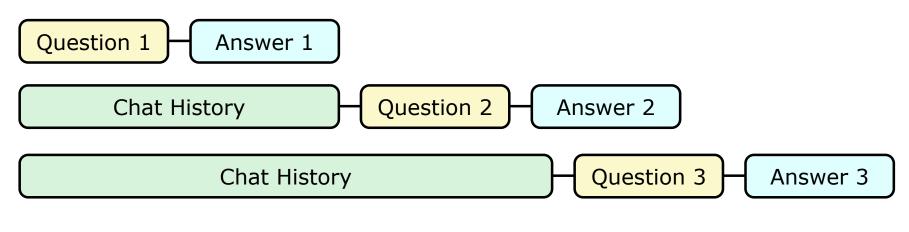


Different mechanisms for different cases

Admission



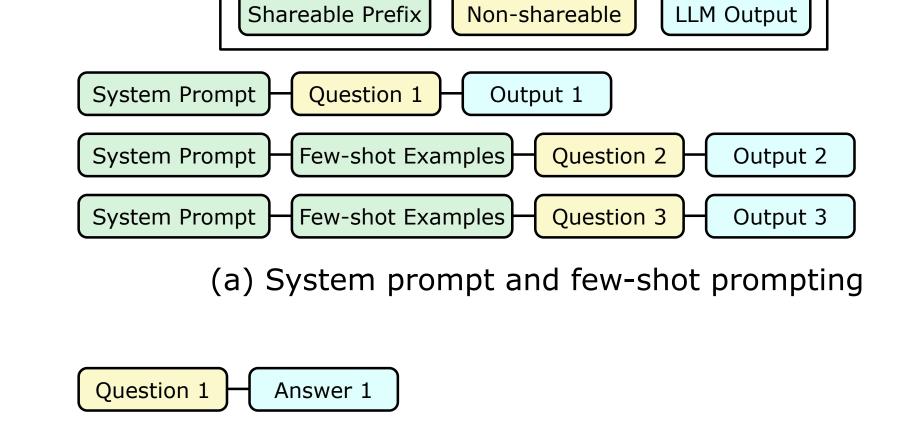
(a) System prompt and few-shot prompting

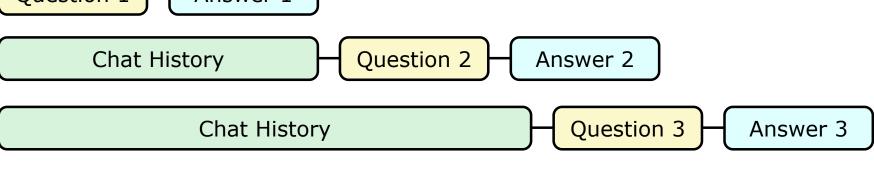


(b) Multi-turn conversation (e.g., ChatGPT)

Different mechanisms for different cases

- Purely input
 - Prefix shared by many requests
 - Can be observed by bookkeeping and comparing previous requests

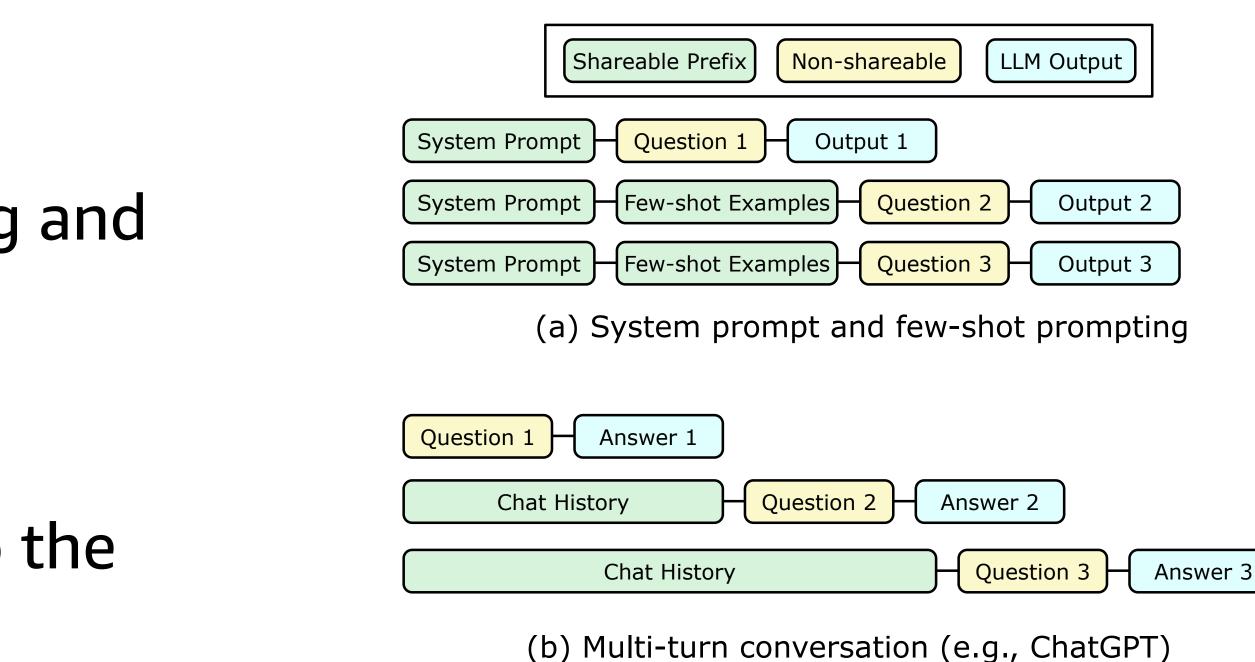




(b) Multi-turn conversation (e.g., ChatGPT)

Different mechanisms for different cases

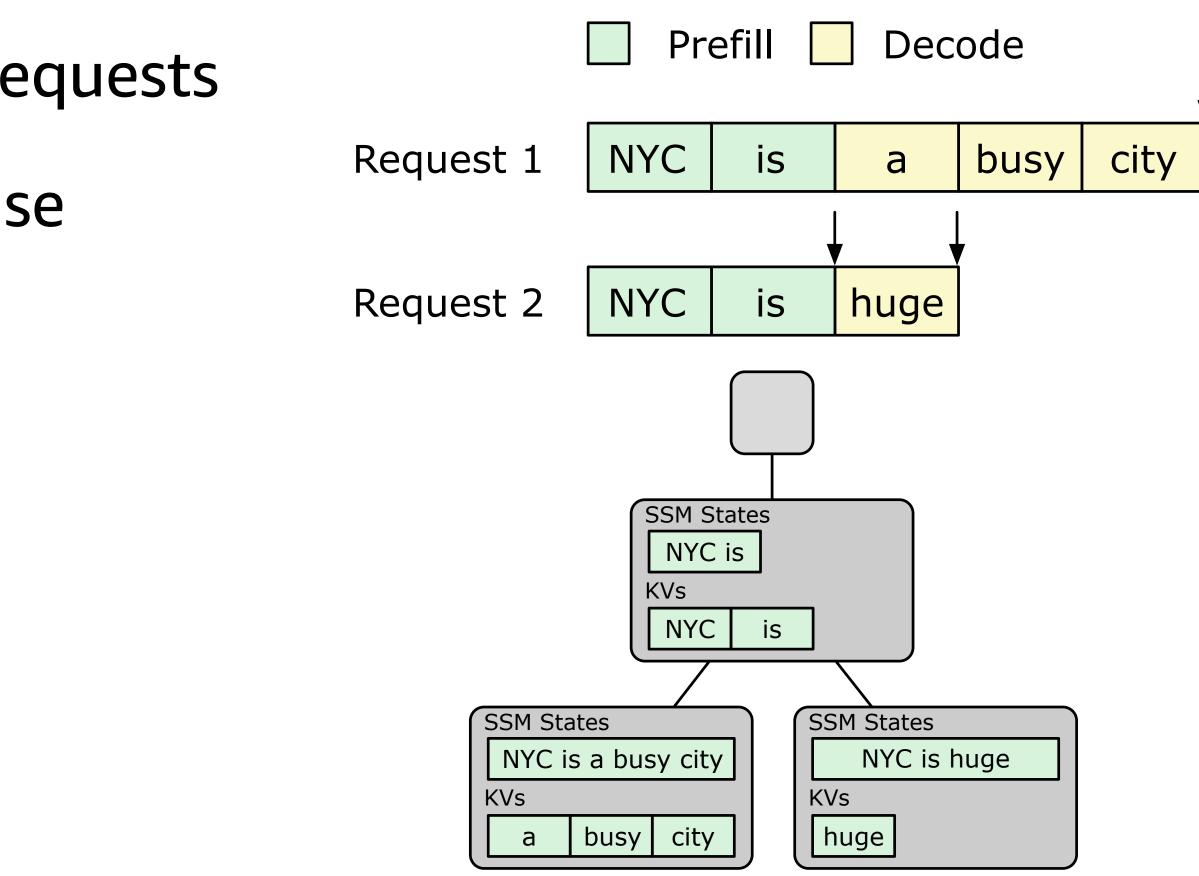
- Purely input
 - Prefix shared by many requests
 - Can be observed by bookkeeping and comparing previous requests
- Input and output
 - Conversations usually append to the last decoded token



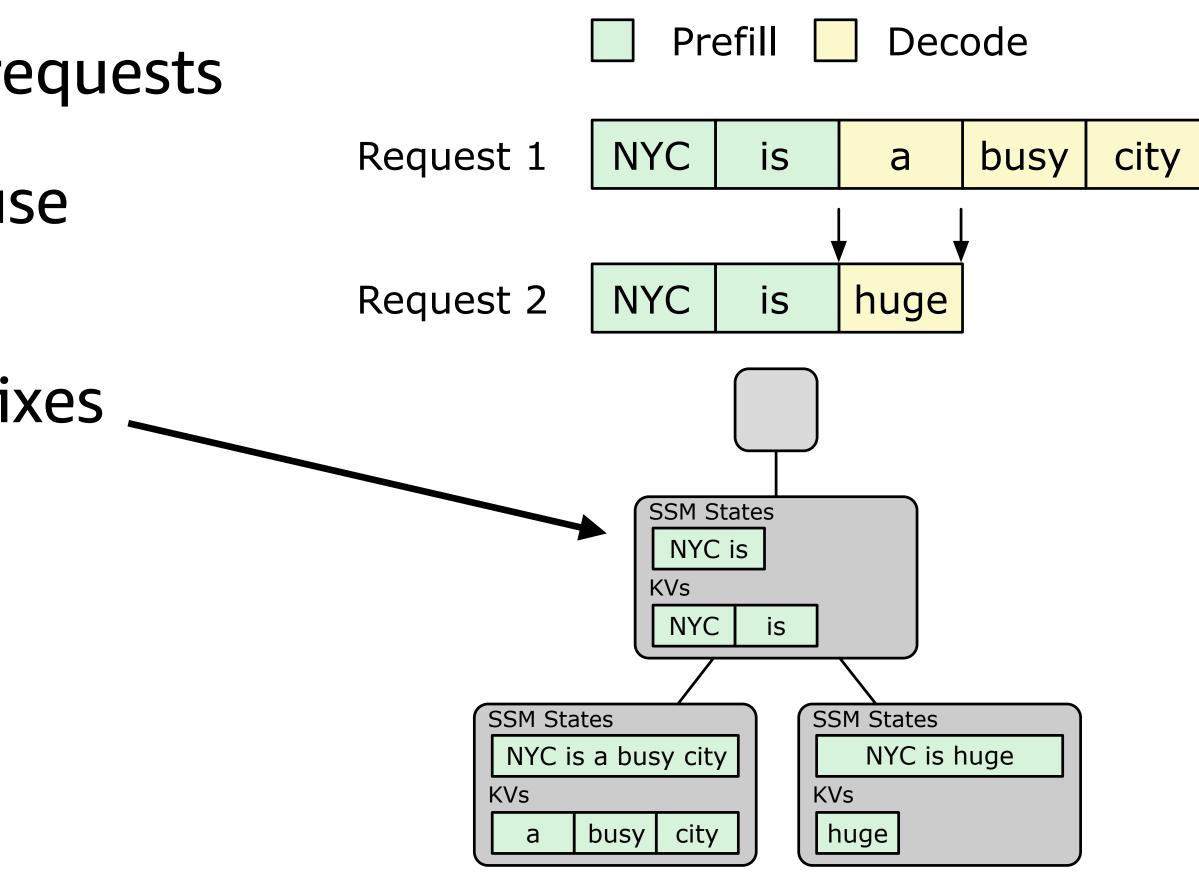
- Use a radix tree to represent past requests
- Nodes naturally represent high reuse likelihood:

Eviction

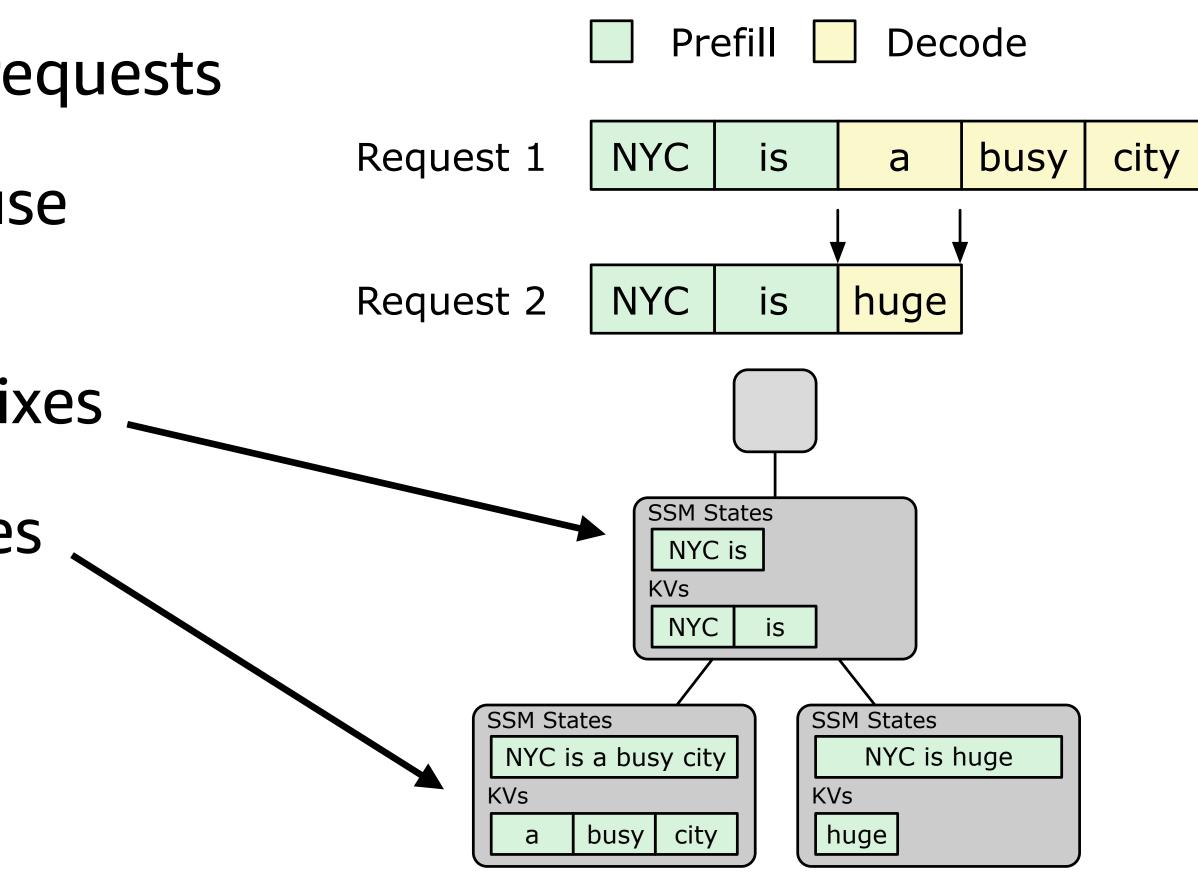
- Use a radix tree to represent past requests
- Nodes naturally represent high reuse likelihood:



- Use a radix tree to represent past requests
- Nodes naturally represent high reuse likelihood:
 - Intermediates: purely-input prefixes



- Use a radix tree to represent past requests
- Nodes naturally represent high reuse likelihood:
 - Intermediates: purely-input prefixes
 - Leaves: input-and-output prefixes



Admission Forecasts prefixes' reuse likelihoods

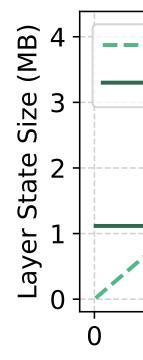
Aside from recency:

Eviction

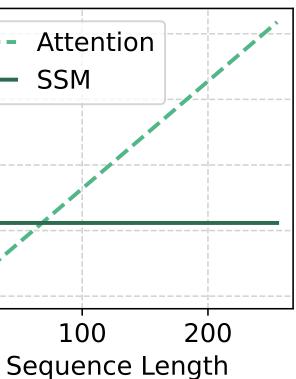
Considers compute savings hits deliver

Different memory-compute savings tradeoffs

 Unlike KVs, SSM states have fixed size regardless of sequence length or compute savings



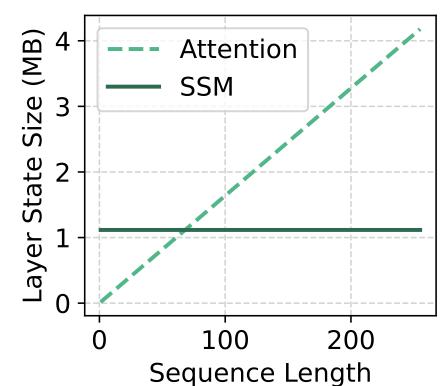
Admission



Eviction

Different memory-compute savings tradeoffs

- Unlike KVs, SSM states have fixed size regardless of sequence length or compute savings



Admission

FLOP efficiency =

• FLOP efficiency: compute savings per unit of memory of reusing a state

Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)

Different memory-compute savings tradeoffs

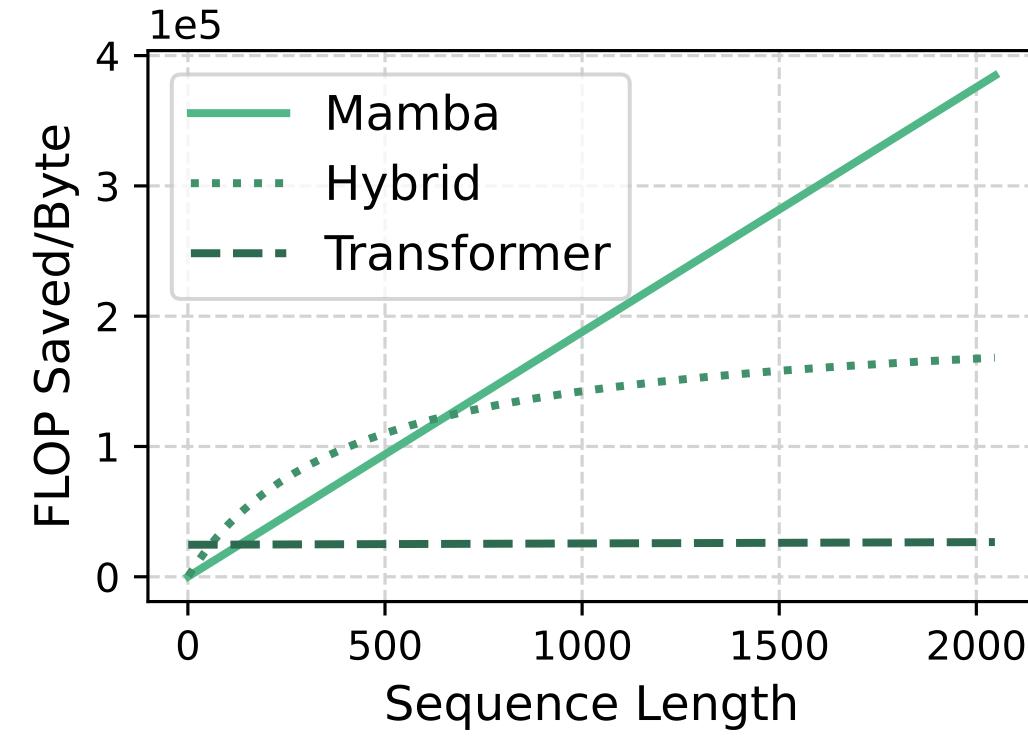
 Models with more SSM layers have more FLOP-efficient states

Total FLOPs across layers (Attn, SSM, MLP)

Memory consumption of all states (KVs, SSM States)

Admission

FLOP efficiency =



FLOP-aware eviction policy

• Existing systems: recency-focused (i.e., evict using LRU)

Utility = recency

Admission

Eviction

FLOP-aware eviction policy

- Existing systems: recency-focused (i.e., evict using LRU)
- Marconi: also considers the potential compute savings

Utility = recency

Admission

Eviction

FLOP-aware eviction policy

- Existing systems: recency-focused (i.e., evict using LRU)
- Marconi: also considers the potential compute savings
- Utility score: balances recency and FLOP efficiency

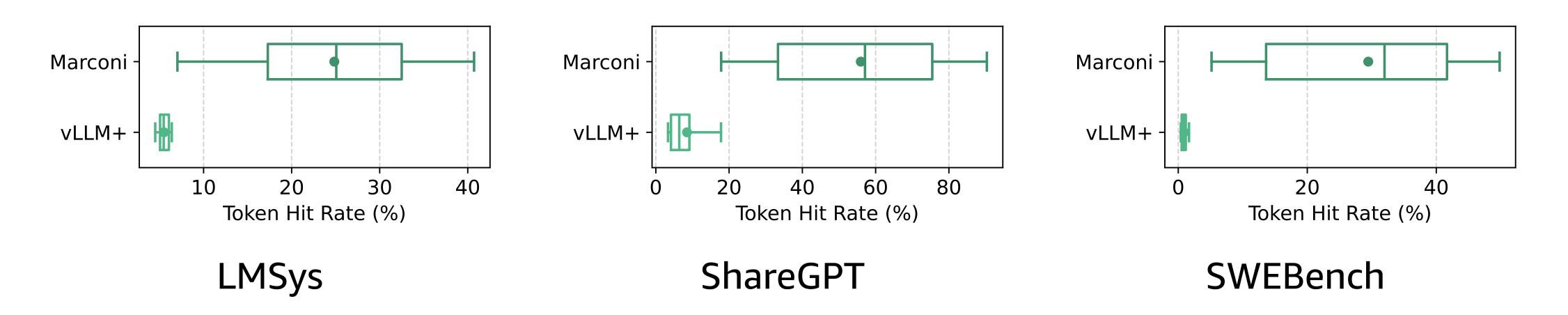
Utility = recency + $\alpha \cdot$ flop_efficiency

Evaluation

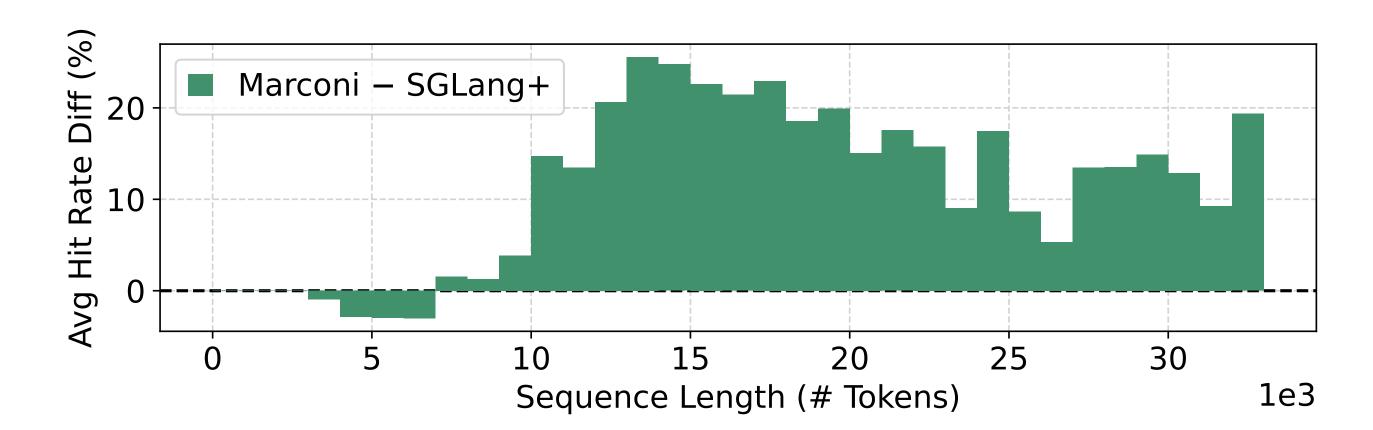
- NVIDIA Mamba2-Hybrid-7B with {4, 24, 28} {Attention, SSM, MLP} layers
- Workloads: conversational (LMSys, ShareGPT) and agentic (SWEBench)
- Metrics: token hit rate (%), Time To First Token (ms)
- Large sweep of experiments with varying cache size and request arrival patterns

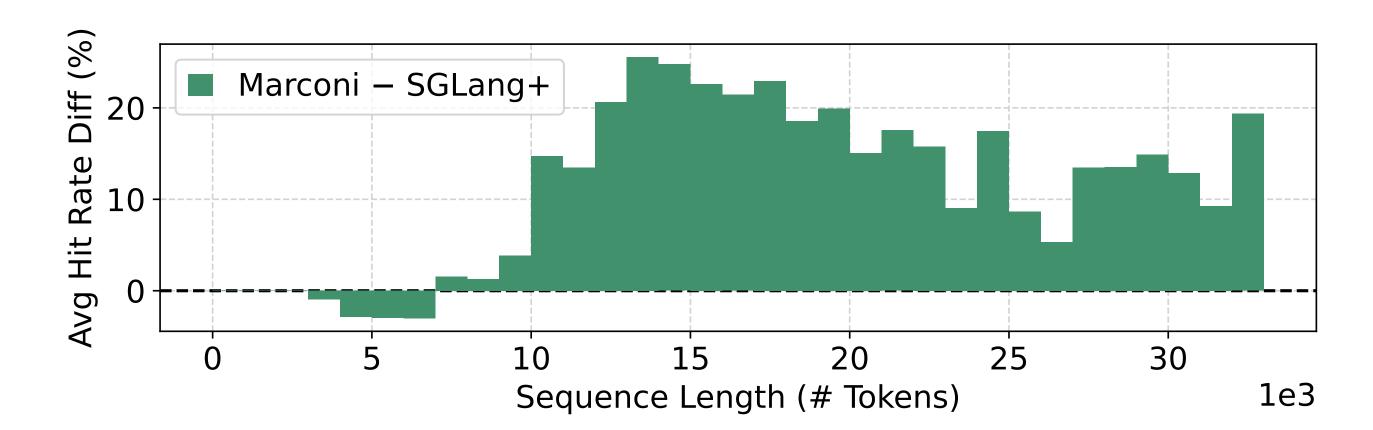
Marconi vs. fine-grained checkpointing

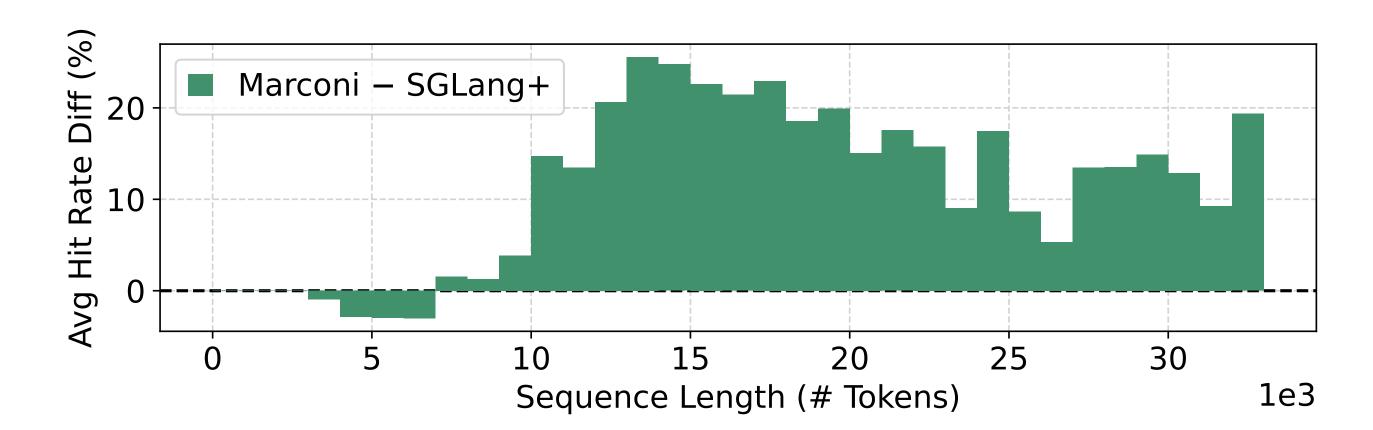
- Judicious admission improves the cache utility significantly
- Average improvement in token hit rate: 4.5X, 7.3X, and 34.4X

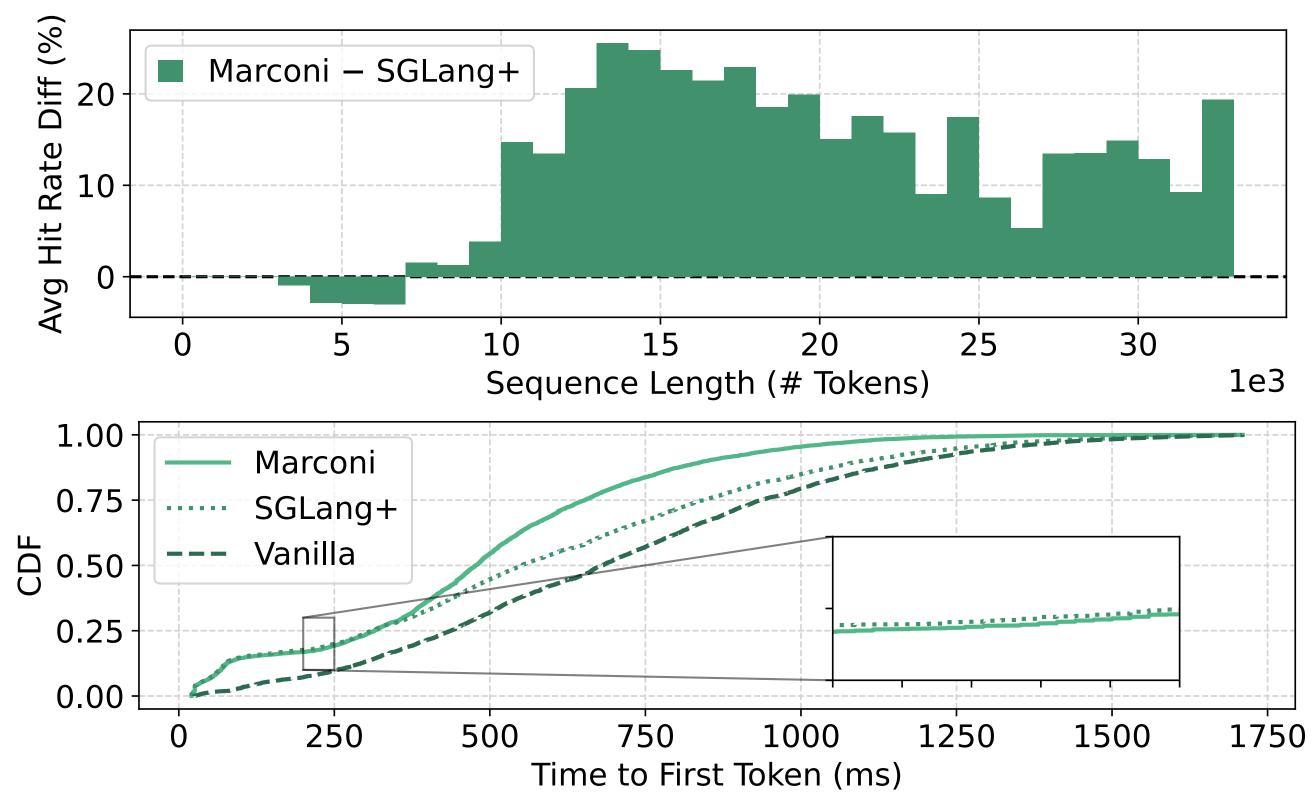


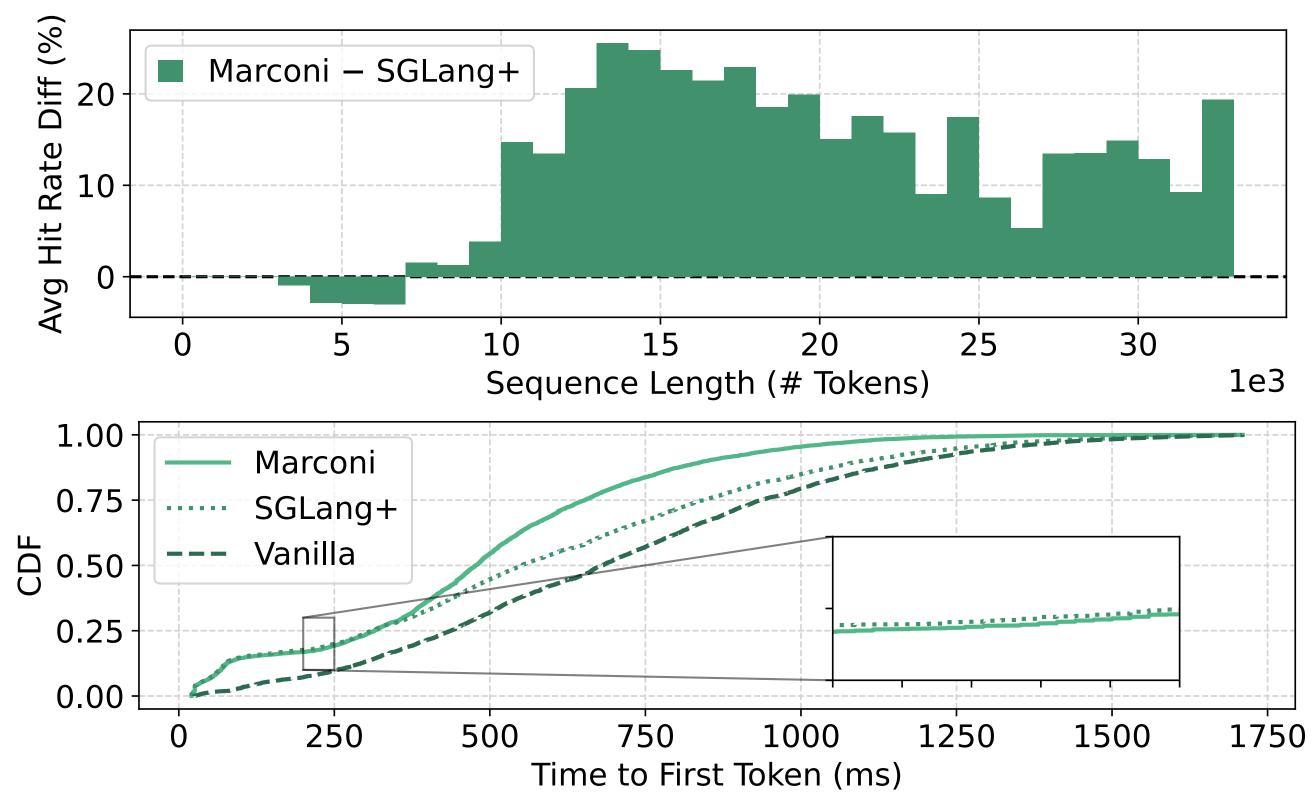
cache utility significantly rate: 4.5X, 7.3X, and 34.4X



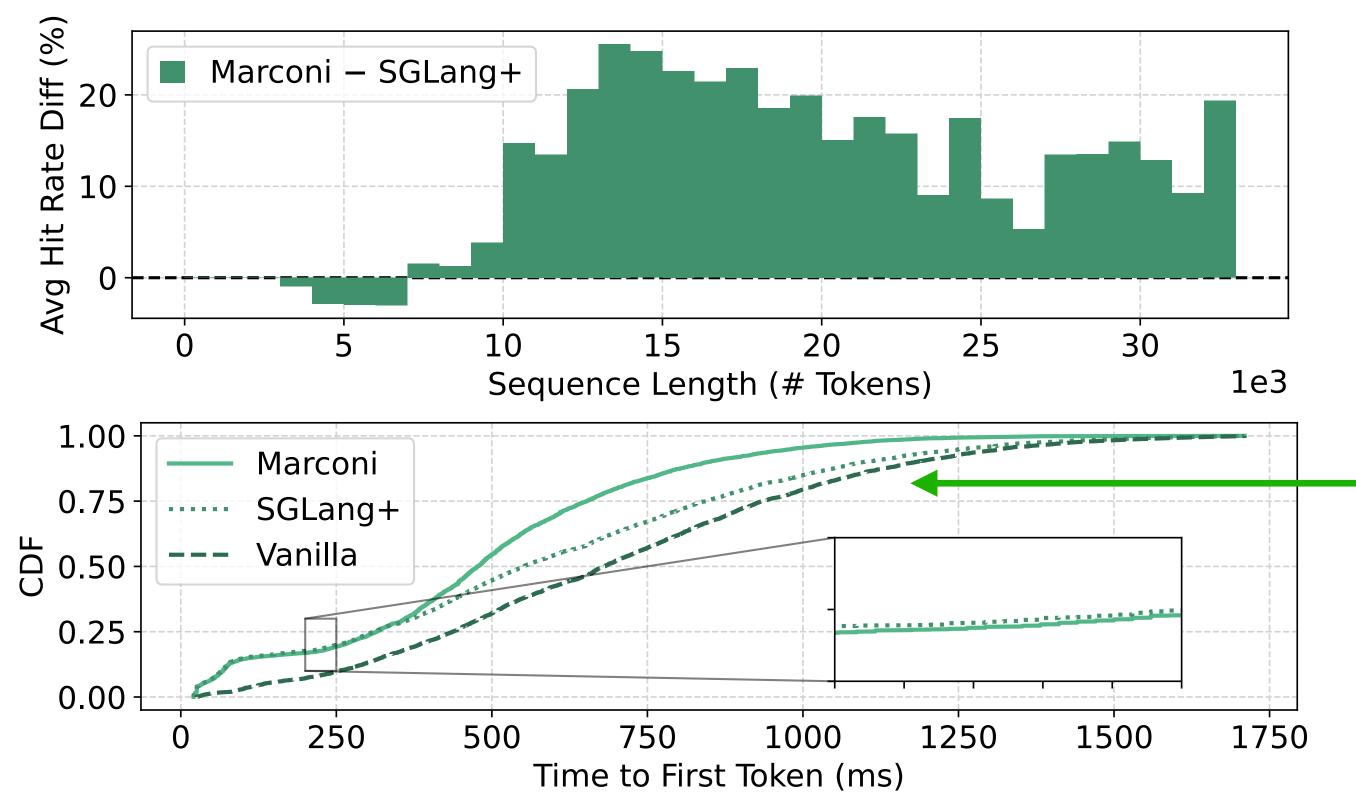








• Improves hit rate of longer sequences, which cost more FLOPs



Bigger TTFT win for longer sequences!

Marconi

- First prefix caching system for models with arbitrary layer compositions • Evaluates cache entries not only on recency, but also:
 - Admission: prefixes' reuse likelihoods
 - Eviction: compute savings that hits deliver
- Source code available! <u>https://github.com/ruipeterpan/marconi</u>

"Marconi plays the mamba, listen to the radio, don't you remember?" — Lyrics of We Built This City, song by Starship

