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NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe
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Europe: an average rise of 2.3°C compared to pre-industrial levels

1°C the global average.

NASA; https://en.wikipedia.org/wiki/Climate_change_in_Europe
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D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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1,216,950 Ibs 15,238,333 Ibs

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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@ GPT-3 @ GPT-4

1,216,950 Ibs 15,238,333 Ibs

< ) 1,287 Megawatt-Hour 62,318 Megawatt-Hour

D. Patterson, et al. Carbon emissions and large neural network training, 2021.
https://tinyml.substack.com/p/the-carbon-impact-of-large-language
Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)
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Biologically Plausible Riternatives

Human Brain Back-Propagation
(~20 Watts) (Bio-Implausible)



Biologically Plausible Alternatives

Human Brain Back-Propagation Forward-Only Algorithm
(~20 Watts) (Bio-Implausible) (Bio-Plausible)
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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Weight Transport

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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Frozen Activities

David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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David E Rumelhart, Geoffrey E Hinton, et.al, “Learning representations by back-propagating errors,” Nature, 1986.
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Bio-F0: a Biologically-Plausible Forward-0nly Algorithm
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B: Fixed Random Projection
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Our Proposed Bio-FO

S: Sparsity Mask
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S: Sparsity Mask Fully Connected Local Connected CNN
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Dataset and Application

MNIST CIFAR-10(100) Mini-ImageNet
Grayscale RGB Subset of
Image Images ImageNet

Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016.
A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009.
R. Mark, et al. An annotated ecqg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.
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MNIST CIFAR-10(100) Mini-ImageNet CHB-MIT MIT-BIH
Grayscale RGB Subset of Electroencephalogram Electrocardiogram
Image Images ImageNet (EEG) (ECG)

Real-world wearable applications:

Complexity overhead/energy consumption is a major constraint.

Vinyals, O., et al. Matching networks for one shot learning. Advances in neural information processing systems, 2016.
A. H. Shoeb. Application of machine learning to epileptic seizure onset detection and treatment. PhD thesis, MIT, 2009. 35
R. Mark, et al. An annotated ecqg database for evaluating arrhythmia detectors. IEEE Transactions on Biomedical Engineering, 1982.
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Bio-FO the state-of-the-art forward-only algorithms, with

the potential to achieve to BP.
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Bio-FO improves the memory efficiency and has approximately

when compared to BP.
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Convergence Rate (CIFAR-10)
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Energy Efficiency

Energy Overheads (Wh)

Algorithms

CIFAR-100

CHB-MIT MIT-BIH

DRTP 131.9 6.4 317.7
PEPITA 123.9 5.9 191.0
FF 753.5 4.8 221.9
Our 37.9 3.5 121.1

Bio-FO outperforms the state-of-the-art forward-only algorithms

in terms of energy consumption.
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Scalability (Architectures)

Error (%)

Datasets

Our-FC

MNIST 1.62 1.36 0.57
CIFAR-10 45.12 35.13 26.08
CIFAR-100 74.57 64.06 64.06

The relevance of Bio-FO with LC and CNN shows the importance of

architectures for improving classification performance.
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Error (%)

Datasets

DRTP PEPITA FF Our BP

mini-imageNet  94.20+049 91.23+0.18 93.64+0.26 67.39+0.25 93.49+0.40

Bio-FO achieves the closest classification performance to BP,

on relatively large-scale datasets such as mini-imageNet.
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