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Background: Federated Learning 
⚫ Update Rule of Federated Learning

◦ Partial participation

◦ Multi-step local SGD

◦ Central Aggregation with Average
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Motivations
⚫ Federated learning can provide privacy guarantee but cannot provide 
robustness guarantee against adversarial examples.

⚫ Adversarial training can provide robustness enhancement but requiring 
more computational resources.
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Dataset CIFAR10 Caltech256

Model Size Clean Acc. Adv. Acc. Clean Acc. Adv. Acc.

FAT-Large 79.74% 56.76% 46.56% 17.76%

FAT-Small 66.57% 54.33% 25.64% 13.49%

FedRolex-AT 67.14% 54.13% 30.18% 11.78%

min
𝑤

max
‖𝛿‖≤𝜖

𝑙(𝑥 + 𝛿;𝑤)



Motivation
⚫ Previous memory-efficient federated learning methods have large 
objective inconsistency incurred by systematic heterogeneity.
◦ To tackle the insufficient computational resources on some clients, previous methods usually allow 

them to train small models or small parts of the global model.

⚫ Objective inconsistency causes poor convergence.
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System Framework
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Client: Local Trainer
Adversarial Cascade Learning

⚫ Guarantee the joint robustness.

⚫ Solution 1: Adding regularization on ‖𝑓𝑚 𝑧𝑚−1 + 𝛿𝑚−1 − 𝑓𝑚 𝑧𝑚−1 ‖ directly

◦ Drawbacks: doubles the batch size and increases the memory requirement.
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Client: Local Trainer
Adversarial Cascade Learning with Strong Convexity Regularization

⚫ Solution 2: Making the loss strongly convex in 𝑧𝑚:

◦ Use a single linear layer as the auxiliary output model to guarantee the convexity

◦ Use ℓ2 regularization to guarantee the 𝜇-strong convexity
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Client: Local Trainer
Robustness-Consistency Relationship

⚫ Object Inconsistency

⚫ 𝛽𝑚
′ (smoothness of the joint loss) and cM (sensitivity of the joint loss) are 

small if we ensure joint robustness

⚫ 𝛽𝑚 (smoothness of the module loss) and 𝑐𝑚 (sensitivity of the module 
loss) are small if we ensure module robustness
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Server: Model Partitioner
⚫ All modules must satisfy the memory constraint.

◦ Module Size <= Min Reserved Memory

⚫ Greedy partitioning
◦ Go through each atom in the forward propagation order

◦ Add atoms into the module until reach the memory limits

◦ Begin the next module
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Server: Training Coordinator
Adaptive Perturbation Adjustment

⚫ Adversarial Perturbation Magnitude 𝜖𝑚
◦ It is sufficient but not necessary: 𝜖𝑚 = max

𝑧𝑚−1,‖𝛿𝑚−1‖≤𝜖𝑚−1

‖𝑓𝑚 𝑧𝑚−1 + 𝛿𝑚−1 − 𝑓𝑚 𝑧𝑚−1 ‖

◦ 𝜖𝑚
𝑡 = 𝛼𝑚

𝑡 𝔼𝑧𝑚−1
max

‖𝛿𝑚−1‖≤𝜖𝑚−1
∗

𝑓𝑚 𝑧𝑚−1 + 𝛿𝑚−1 − 𝑓𝑚 𝑧𝑚−1

⚫ Adaptive adjustment of 𝛼𝑚
𝑡

Center of Computational Evolutionary Intelligence (CEI) 10

𝛼𝑚
𝑡
=

𝛼𝑚
𝑡−1

+ Δ𝛼, if
𝐶𝑚+1

𝑡

𝐴𝑚+1
𝑡

> 1 + 𝛾
𝐶𝑚
∗

𝐴𝑚
∗ ;

𝛼𝑚
𝑡−1

− Δ𝛼, if
𝐶𝑚+1

𝑡

𝐴𝑚+1
𝑡

< 1 − 𝛾
𝐶𝑚
∗

𝐴𝑚
∗ ;

𝛼𝑚
𝑡−1

, elsewhere



Server: Training Coordinator
Differentiated Module Assignment

⚫ Train more modules on resource-sufficient clients
◦ The combined modules fit the real-time available computational resources on each device:

⚫ Devices with more computational resources become the prophet: train 
more modules to see what will happen in the future training stage and 
help reduce the objective inconsistency.
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Server: Partial-Average Model Aggregator
⚫ Each parameter is averaged only among clients who trained this 
parameter in this communication round.

Center of Computational Evolutionary Intelligence (CEI) 12

Partial-Average 
Model Aggregator



Experiments: Hardware Sampling
⚫ We sample the devices from pools of devices
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Empirical Results
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⚫ Higher accuracy and robustness
◦ Comparable to joint training



Empirical Results
⚫ Less training time

◦ Avoid memory swapping and synchronization time
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Conclusions
⚫ We propose consistent and robust adversarial cascade learning with 
strong convexity regularization to reduce the memory requirement for 
federated adversarial training.

⚫ We propose a server coordinator, with adaptive perturbation adjustment 
to balance the utility and robustness, and differentiated module 
assignment to further reduce the objective inconsistency.

⚫ FedProphet maintains almost the same accuracy and robustness as joint 
federated adversarial training, while reducing 80% memory or achieving up 
to 11x speedup in training time.
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