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Background: Federated Learning

e Update Rule of Federated Learning
o Partial participation
o Multi-step local SGD
o Central Aggregation with Average

Wi = W — 1t E PrIrk t
keK,
Ti—1

Gt = z Ex~px,k[wk,t(xi Wk,t,j)]
j=0
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Motivations

e Federated learning can provide privacy guarantee but cannot provide
robustness guarantee against adversarial examples.

e Adversarial training can provide robustness enhancement but requiring
more computational resources.

min max [(x + §; w)
w_||d]|se
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Motivation

® Previous memory-efficient federated learning methods have large

objective inconsistency incurred by systematic heterogeneity.

o To tackle the insufficient computational resources on some clients, previous methods usually allow
them to train small models or small parts of the global model.

e Objective inconsistency causes poor convergence.

€t2 = ”Vlk,t(xi we) — Vi(x; Wt)”2
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System Framework

Model Partitioner Training Coordinator Partial-Average
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Output Model

p
': Module Client Resource J [ Differentiated Module Assignment J

Monitor

for Prophet Clients

&

@ 1. Val. Clean & Adv. Acc. ® 1. Pert. Mag. €,,,_4 © Trained @ Aggregated
2. Avail. Hardware Res. 2. Module Assignment Modules Global Model

Local Trainer

'*Dﬂa* & | 5| Sl l*_@lﬂ_a*

Hardware Resources Hardware Resources Hardware Resources

MemBl ]| Perfll ] Mem | Pefl | Mem NN |  Perf I

Duke

Center of Computational Evolutionary Intelligence (CEl)



Client: Local Trainer
Adversarial Cascade Learning

e Guarantee the joint robustness.

I16m-1ll < €m-1 I16mll < €m I0m+1ll < €msa

® 00 l o l > l 9 0 @

Zm-1 = fm-1Zm—2 Zym = fn(Zm-1) Zmt+1 = fm41(Zm)

— [ — [

m m+1

Sufficient condition
. max ”fm(Zm—l + 6m—1) — fm(Zm—l)” < €m
for joint robustness I8m—1llS€m—_1

e Solution 1: Adding regularization on |, (zm-1 + 6m-1) — fn(zm-1)| directly

l%dv = lm(Zm-1) + Um max ”fm(zm—l + Om-1) — fm(Zm—l)”z

|10m—-1ll<€m-1

o Drawbacks: doubles the batch size and increases the memory requirement.
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Client: Local Trainer
Adversarial Cascade Learning with Strong Convexity Regularization

e Solution 2: Making the loss strongly convex in z,,:

u
lgndv = max [ln(Zm-1 + Om—1) + 71” | fin(Zm-1 + 5m—1)”2]

16m-1ll<€m—1

Vo Coms + 8 0) — izl < 92 4 [36m 4 9
max A _ — A S
- 18morliSEmoy e Ml T Emed mism-1 Um Um Uz

o Use a single linear layer as the auxiliary output model to guarantee the convexity
o Use ¥, regularization to guarantee the u-strong convexity
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Client: Local Trainer
Robustness-Consistency Relationship

e Object Inconsistency

0Zm -
”vwml _vwmlm”2 < aw_ \/Z(Cm+cM)(ﬁm+ﬁm)*

Fr

e S..(smoothness of the joint loss) and cy; (sensitivity of the joint loss) are
small if we ensure joint robustness

® [5,,, (smoothness of the module loss) and ¢, (sensitivity of the module
loss) are small if we ensure module robustness
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Server: Model Partitioner

e All modules must satisfy the memory constraint.
o Module Size <= Min Reserved Memory

Algorithm 1: Memory-constrained Model Partition

® G FEEdy pa rt't' on | ng Require: The “atom” sequence (a; o - - - 0 ap);

> Go through each atom in the forward propagation order . Minimal reserved memory Ruin
Initialize M = 0, m = 0;

o Add atoms into the module until reach the memory limits fori < Ldo
if MemReq(m U {a;}) < R, then
| Append a; to m;

o Begin the next module

else
Append m to M;
m «— {a;};

Append m to M;
Result: Model partition M
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Server: Training Coordinator
Adaptive Perturbation Adjustment

e Adversarial Perturbation Magnitude €,,

o |t is sufficient but not necessary: €,,, = max | fin(Zm—1 + 6m—1) — fin(Zm—D||
Zm-1ll0m-1lls€m-1

el =alB, [ max. |NfmGZnot + 6me1) = fnZm_ll
|6m—-1ll<€m—_1
)

e Adaptive adjustment of o,

( (t) cr,

C
,(Tf V4 A, lfAng)-l_l >(1+7v)

m+1

A*'

(t) *
_ C Cm,

m+1

ka,(,f_ D elsewhere
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Server: Training Coordinator
Differentiated Module Assignment

® Train more modules on resource-sufficient clients
o> The combined modules fit the real-time available computational resources on each device:

Client k
(@) (1) (t)
Rk P Pk

min

MemReq(mom+1o0---0 M;Et}) < Rf).

()
)y o Tk
FLOPs(mom+1o0---0 M) < WFLOPS(m).
P

® Devices with more computational resources become the prophet: train
more modules to see what will happen in the future training stage and
help reduce the objective inconsistency.
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Server: Partial-Average Model Aggregator

e Each parameter is averaged only among clients who trained this
parameter in this communication round.

» q w(r,E) | Partial-Average
keS:‘fJ k nk Model Aggregator
s = {k:M" > n},

2ges® 9k

(2+1) _
n =

(t,E)
Dpex® 90, [

Liex® 9k

ol — K = {k:M" =n}.
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Experiments: Hardware Sampling

e \We sample the devices from pools of devices

VGG16 on CIFAR-10

'® balanced |
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(a) VGG16 with Rpyin = 60 MB.
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Module

Layer = Mem. Req. FLOPs

(b) ResNet34 with Rpyin, = 224 MB.

Module | Layer/Block Mem. Req. FLOPs

1

Conv 1

55,
Conv 8 MB

26G

Conv 1486 MB  39G

BasicBlock1  1302MB  75G

Conv
Conv
Conv

46.1 MB 49G

BasicBlock2  1302MB  75G

BasicBlock 3 197.9 MB

BasicBlock 4 133G

Conv
Conv
Conv

0N | U= W

Conv ¢

BasicBlock 5
BasicBlock 6
BasicBlock 7
BasicBlock 8

221.6 MB

Conv

Conv
Conv

Conv

Linear 1
Linear 2
Linear 3

BasicBlock 9
BasicBlock 10
BasicBlock 11
BasicBlock 12
BasicBlock 13

206.5 MB

BasicBlock 14

BasicBlock 15

BasicBlock 16
Linear

204.0 MB




Empirical Results

e Higher accuracy and robustness
o Comparable to joint training

Dataset
Sys. Hetero.

balanced

CIFAR-10 (32  32)

unbalanced

balanced

Caltech-256 (224 =« 224)

unbalanced

Method

Clean Acc.

PGD Acc.

AA Ace. | Clean Acc.

PGD Acc.

AA Acc.

Clean Acc.

PGD Acc.

AA Acc. | Clean Acc.

PGD Acc.

JEAT

79.74%

56.76%

55.01% 79.74%

56.76% 55.01%

46.56%

19.76%

18.36% 46.56%

19.76%

FedDE-AT
FedET-AT
HeteroFL-AT
FedDrop-AT
FedRolex-AT
FedRBN

47 77%
40.73%
51.63%
65.92%
67.14%
84.81%

24 .8B8%
7.29%
39.36%
54.21%
54.13%
42 88%

48.16%
34.91%
55.25%
63.26%
66.44%
86.70%

18.72%
512%
38.47%
53.23%
53.51%
39.82%

18.34%
5.54%
41.96%
52.61%
52.00%
39.85%

25.39%
B.74%
43.05%
53.21%
53.25%
42 99%

6.74%
11.48%
27.80%
27.10%
30.18%
78.38%

4.83%
2.76%
ELFDIJI'II.U
11.87%
11.78%
3.14%

11.78%
16.49%
9.43%

11.68%
12.51%
78.81%

4.10%
2.44%
B.15%
10.05%
9.84%
0%

0.09%
1.92%
S.M'::"ru
6.54%
ELHIIJI'II.U
1.43%

FedProphet

77.79%

50.22%

57.89% 76.47%

59.51% 58.64%

47.07%

19.10%

18.11% 43.39%

14.93%
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Empirical Results

® Less training time

o Avoid memory swapping and synchronization time

CIFAR-10, balanced CIFAR-10, unbalanced

Caltech-256, balanced ; Caltech-256, unbalanced

[ Computation
[ Data Access

M
o

=
n

=
o

0
Q
£
=
()}
c
=
°
'_

o
n

o
=}

Center of Computational Evolutionary Intelligence (CEl)



Conclusions

e \We propose consistent and robust adversarial cascade learning with
strong convexity regularization to reduce the memory requirement for
federated adversarial training.

e \We propose a server coordinator, with adaptive perturbation adjustment
to balance the utility and robustness, and differentiated module
assignment to further reduce the objective inconsistency.

® FedProphet maintains almost the same accuracy and robustness as joint
federated adversarial training, while reducing 80% memory or achieving up
to 11x speedup in training time.
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