

FedProphet: Memory-Efficient Federated Adversarial Training via Robust and Consistent Cascade Learning

Minxue Tang*1 Yitu Wang*1 Jingyang Zhang1 Louis DiValentin2 Aolin Ding2 Amin Hass2 Yiran Chen1 Hai "Helen" Li1

¹Duke University, Dept. of Electrical and Computer Engineering
²Accenture Cyber Labs

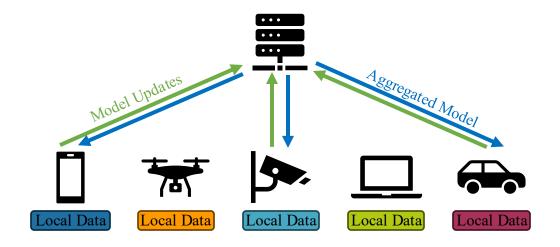
accenture Duke

Background: Federated Learning

- Update Rule of Federated Learning
 - Partial participation
 - Multi-step local SGD
 - Central Aggregation with Average

$$w_{t+1} = w_t - \eta_t \sum_{k \in \mathbb{K}_t} p_k \tilde{g}_{k,t}$$

$$\tilde{g}_{k,t} = \sum_{j=0}^{\tau_k - 1} \mathbb{E}_{x \sim p_{x,k}} [\nabla l_{k,t}(x; w_{k,t,j})]$$

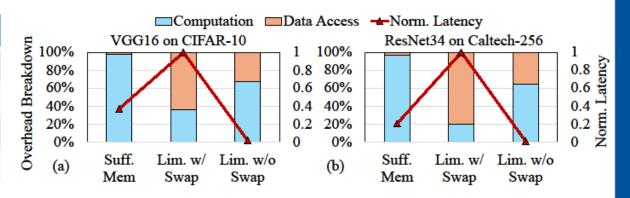


Motivations

- Federated learning can provide privacy guarantee but cannot provide robustness guarantee against adversarial examples.
- Adversarial training can provide robustness enhancement but requiring more computational resources.

$$\min_{w} \max_{\|\delta\| \le \epsilon} l(x + \delta; w)$$

Dataset	CIFA	\R10	Caltech256			
Model Size	Clean Acc.	Adv. Acc.	Clean Acc.	Adv. Acc.		
FAT-Large	79.74%	56.76%	46.56%	17.76%		
FAT-Small	66.57%	54.33%	25.64%	13.49%		
FedRolex-AT	67.14%	54.13%	30.18%	11.78%		

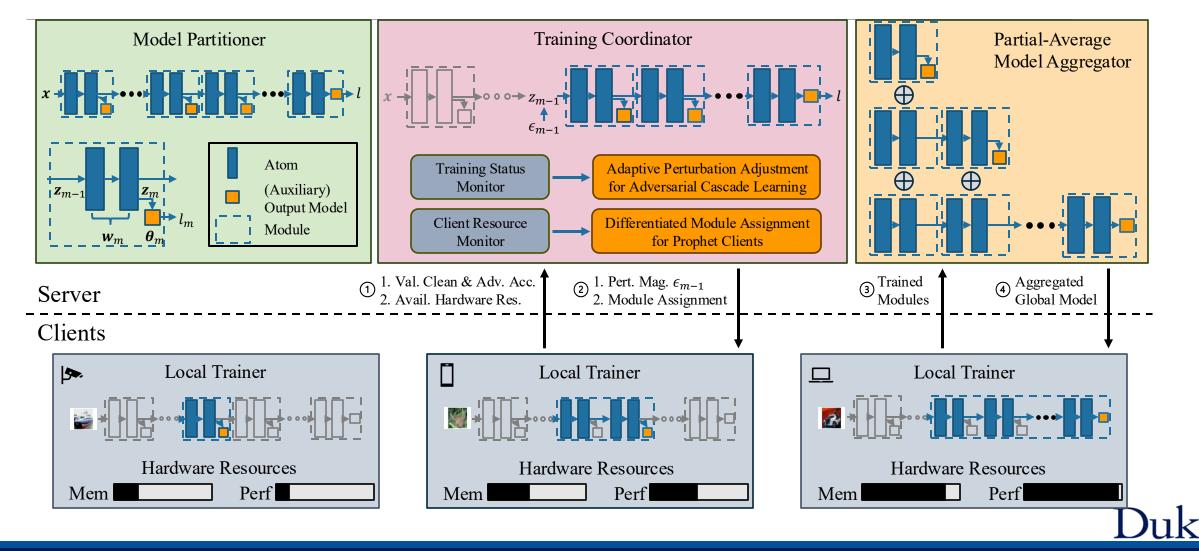


Motivation

- Previous memory-efficient federated learning methods have large objective inconsistency incurred by systematic heterogeneity.
 - To tackle the insufficient computational resources on some clients, previous methods usually allow them to train small models or small parts of the global model.
- Objective inconsistency causes poor convergence.

$$\xi_t^2 = \left\| \nabla l_{k,t}(x; w_t) - \nabla l(x; w_t) \right\|^2$$

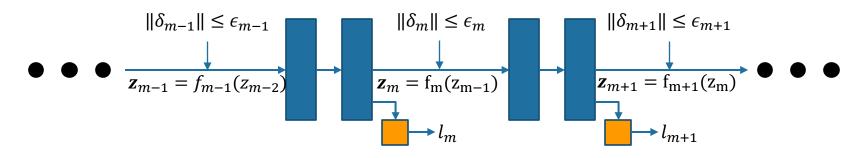
System Framework



Client: Local Trainer

Adversarial Cascade Learning

Guarantee the joint robustness.



Sufficient condition for joint robustness

$$\max_{\|\delta_{m-1}\| \le \epsilon_{m-1}} \|f_m(z_{m-1} + \delta_{m-1}) - f_m(z_{m-1})\| \le \epsilon_m$$

• Solution 1: Adding regularization on $||f_m(z_{m-1} + \delta_{m-1}) - f_m(z_{m-1})||$ directly

$$l_m^{adv} = l_m(z_{m-1}) + \mu_m \max_{\|\delta_{m-1}\| \le \epsilon_{m-1}} \|f_m(z_{m-1} + \delta_{m-1}) - f_m(z_{m-1})\|^2$$

Drawbacks: doubles the batch size and increases the memory requirement.

Client: Local Trainer

Adversarial Cascade Learning with Strong Convexity Regularization

• Solution 2: Making the loss strongly convex in z_m :

$$l_{m}^{adv} = \max_{\|\delta_{m-1}\| \le \epsilon_{m-1}} [l_{m}(z_{m-1} + \delta_{m-1}) + \frac{\mu_{m}}{2} \|f_{m}(z_{m-1} + \delta_{m-1})\|^{2}]$$

$$\max_{\|\delta_{m-1}\| \le \epsilon_{m-1}} \|f_{m}(z_{m-1} + \delta_{m-1}) - f_{m}(z_{m-1})\| \le \frac{g_{m}}{\mu_{m}} + \sqrt{\frac{2c_{m}}{\mu_{m}} + \frac{g_{m}^{2}}{\mu_{m}^{2}}}$$

- Use a single linear layer as the auxiliary output model to guarantee the convexity
- Use ℓ_2 regularization to guarantee the μ -strong convexity

Client: Local Trainer

Robustness-Consistency Relationship

Object Inconsistency

$$\|\nabla_{w_m}l - \nabla_{w_m}l_m\|_2 \le \left\|\frac{\partial z_m}{\partial w_m}\right\|_2 \sqrt{2(c_m + c_M)(\beta_m + \beta_m')}.$$

- β_m' (smoothness of the joint loss) and $c_{\rm M}$ (sensitivity of the joint loss) are small if we ensure joint robustness
- β_m (smoothness of the module loss) and c_m (sensitivity of the module loss) are small if we ensure module robustness

Server: Model Partitioner

- All modules must satisfy the memory constraint.
 - Module Size <= Min Reserved Memory
- Greedy partitioning
 - Go through each atom in the forward propagation order
 - Add atoms into the module until reach the memory limits
 - Begin the next module

```
Algorithm 1: Memory-constrained Model Partition
```

```
Require: The "atom" sequence (a_1 \circ \cdots \circ a_L);

Minimal reserved memory R_{\min}

Initialize \mathbb{M} = \emptyset, m = \emptyset;

for i \leq L do

| if MemReq(m \cup \{a_i\}) < R_{\min} then
| Append a_i to m;

else
| Append m to \mathbb{M};
| m \leftarrow \{a_i\};

Append m to \mathbb{M};

Result: Model partition \mathbb{M}
```

Server: Training Coordinator Adaptive Perturbation Adjustment

- Adversarial Perturbation Magnitude ϵ_m
 - $\text{ It is sufficient but not necessary: } \epsilon_m = \max_{z_{m-1}, \|\delta_{m-1}\| \leq \epsilon_{m-1}} \|f_m(z_{m-1} + \delta_{m-1}) f_m(z_{m-1})\|$ $\epsilon_m^{(t)} = \alpha_m^{(t)} \mathbb{E}_{z_{m-1}} \Big[\max_{\|\delta_{m-1}\| \leq \epsilon_{m-1}^*} \|f_m(z_{m-1} + \delta_{m-1}) f_m(z_{m-1})\| \Big]$

$$\circ \ \epsilon_m^{(t)} = \alpha_m^{(t)} \mathbb{E}_{z_{m-1}} \left[\max_{\|\delta_{m-1}\| \le \epsilon_{m-1}^*} \|f_m(z_{m-1} + \delta_{m-1}) - f_m(z_{m-1})\| \right]$$

• Adaptive adjustment of $\alpha_m^{(t)}$

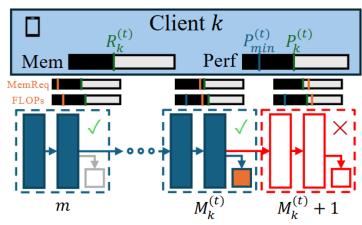
$$\alpha_{m}^{(t)} = \begin{cases} \alpha_{m}^{(t-1)} + \Delta \alpha, & \text{if } \frac{C_{m+1}^{(t)}}{A_{m+1}^{(t)}} > (1+\gamma) \frac{C_{m}^{*}}{A_{m}^{*}}; \\ \alpha_{m}^{(t-1)} - \Delta \alpha, & \text{if } \frac{C_{m+1}^{(t)}}{A_{m+1}^{(t)}} < (1-\gamma) \frac{C_{m}^{*}}{A_{m}^{*}}; \\ \alpha_{m}^{(t-1)}, & \text{elsewhere} \end{cases}$$

Server: Training Coordinator Differentiated Module Assignment

- Train more modules on resource-sufficient clients
 - The combined modules fit the real-time available computational resources on each device:

$$\operatorname{MemReq}(m \circ m + 1 \circ \cdots \circ M_k^{(t)}) \leq R_k^{(t)}.$$

$$\operatorname{FLOPs}(m \circ m + 1 \circ \cdots \circ M_k^{(t)}) \leq \frac{P_k^{(t)}}{P_{\min}^{(t)}} \operatorname{FLOPs}(m).$$

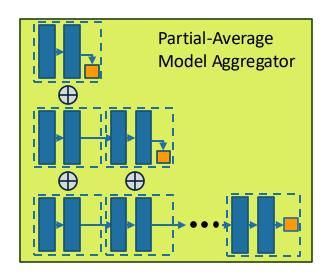


• Devices with more computational resources become the prophet: train more modules to see what will happen in the future training stage and help reduce the objective inconsistency.

Server: Partial-Average Model Aggregator

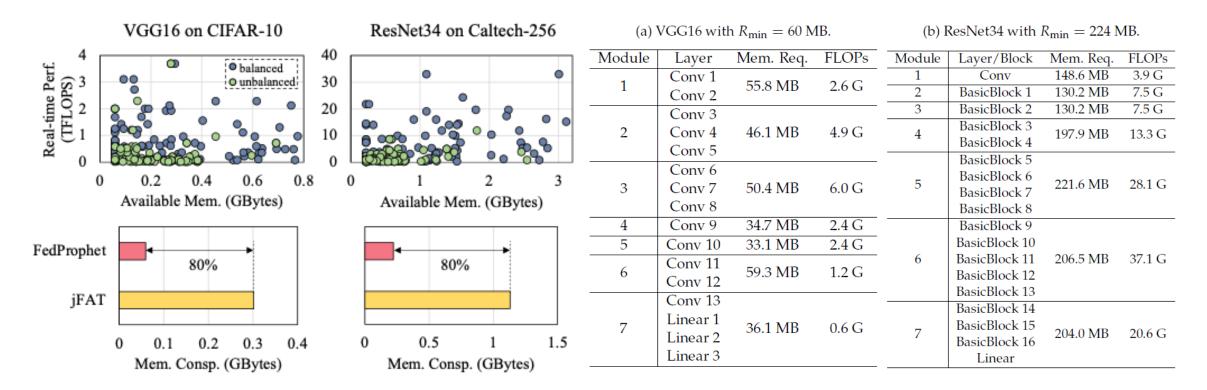
 Each parameter is averaged only among clients who trained this parameter in this communication round.

$$\begin{aligned} w_n^{(t+1)} &= \frac{\sum_{k \in \mathbb{S}_n^{(t)}} q_k w_{n,k}^{(t,E)}}{\sum_{k \in \mathbb{S}_n^{(t)}} q_k}, \quad \mathbb{S}_n^{(t)} &= \{k : M_k^{(t)} \ge n\}, \\ \theta_n^{(t+1)} &= \frac{\sum_{k \in \mathbb{K}_n^{(t)}} q_k \theta_{n,k}^{(t,E)}}{\sum_{k \in \mathbb{K}_n^{(t)}} q_k}, \quad \mathbb{K}_n^{(t)} &= \{k : M_k^{(t)} = n\}. \end{aligned}$$



Experiments: Hardware Sampling

We sample the devices from pools of devices



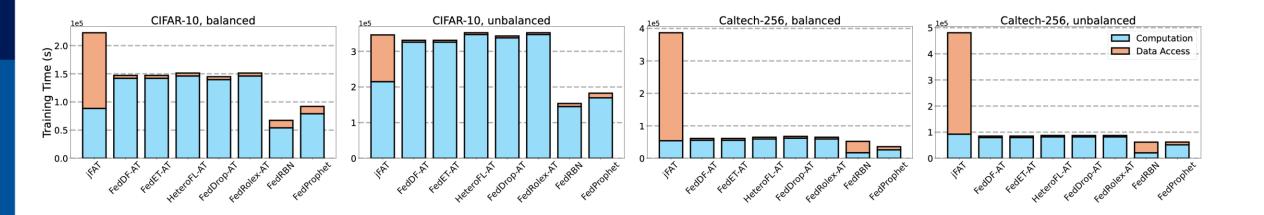
Empirical Results

- Higher accuracy and robustness
 - Comparable to joint training

Dataset	CIFAR-10 (32 × 32)					Caltech-256 (224 × 224)						
Sys. Hetero.	balanced			unbalanced		balanced		unbalanced				
Method	Clean Acc.	PGD Acc.	AA Acc.	Clean Acc.	PGD Acc.	AA Acc.	Clean Acc.	PGD Acc.	AA Acc.	Clean Acc.	PGD Acc.	AA Acc.
jFAT	79.74%	56.76%	55.01%	79.74%	56.76%	55.01%	46.56%	19.76%	18.36%	46.56%	19.76%	18.36%
FedDF-AT	47.77%	24.88%	18.72%	48.16%	25.39%	18.34%	6.74%	4.83%	4.10%	11.78%	0.09%	0%
FedET-AT	40.73%	7.29%	5.12%	34.91%	8.74%	5.54%	11.48%	2.76%	2.44%	16.49%	1.92%	1.73%
HeteroFL-AT	51.63%	39.36%	38.47%	55.25%	43.05%	41.96%	27.80%	8.70%	8.15%	9.43%	3.04%	2.87%
FedDrop-AT	65.92%	54.21%	53.23%	63.26%	53.21%	52.61%	27.10%	11.87%	10.05%	11.68%	6.54%	5.20%
FedRolex-AT	67.14%	54.13%	53.51%	66.44%	53.25%	52.00%	30.18%	11.78%	9.84%	12.51%	5.80%	4.81%
FedRBN	84.81%	42.88%	39.82%	86.70%	42.99%	39.85%	78.38%	3.14%	0%	78.81%	1.43%	0%
FedProphet	77.79%	59.22%	57.89%	76.47%	59.51%	58.64%	47.07%	19.10%	18.11%	43.39%	14.93%	14.41%

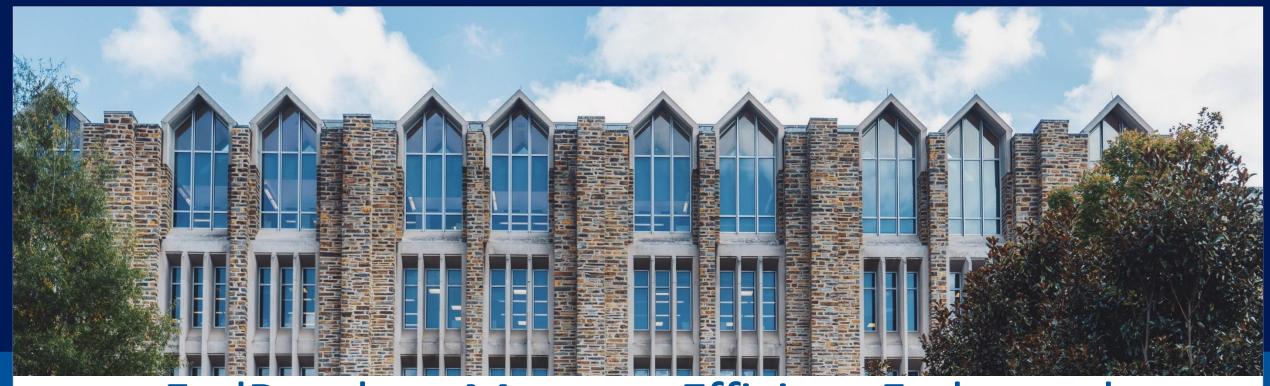
Empirical Results

- Less training time
 - Avoid memory swapping and synchronization time



Conclusions

- We propose consistent and robust adversarial cascade learning with strong convexity regularization to reduce the memory requirement for federated adversarial training.
- We propose a server coordinator, with adaptive perturbation adjustment to balance the utility and robustness, and differentiated module assignment to further reduce the objective inconsistency.
- FedProphet maintains almost the same accuracy and robustness as joint federated adversarial training, while reducing 80% memory or achieving up to 11x speedup in training time.



FedProphet: Memory-Efficient Federated Adversarial Training via Robust and Consistent Cascade Learning

Minxue Tang*1 Yitu Wang*1 Jingyang Zhang1 Louis DiValentin2 Aolin Ding2 Amin Hass2 Yiran Chen1 Hai "Helen" Li1

¹Duke University, Dept. of Electrical and Computer Engineering
²Accenture Cyber Labs

accenture Duke

