== Microsoft

LeanAttention
Hardware-Aware Scalable Exact Attention Mechanism

Rya Sanovar, Srikant Bharadwaj, Renee St. Amant, Victor Riihle, Saravan Rajmohan

Why is attention execution important?

Support long contexts Grok +
>1M tokens @ % Claude

Improves model utility and delivers throughput

Ragged BatChes.' «=@==Total Latency «=@==PrefillOthers «=@=DecodeOthers
«=@==PrefillAttention «=@=DecodeAttention
Batch requests of 900
unequal context lerllf &
/engthS L TTTTT) tc); 500 Decode Attention
g ;‘88 takes up 50-60%
igg —9 | Of total
Very slow !l o~ processing time !
Ok 20k 40k 60k 80k 100k

Prompt Length
8:1 token ratio on Phi-3 Medium. Measured on ONNXRuntime.

Why? SOTA attention mechanisms have low hardware occupancy for these
workloads. :
Faster inference

Need: A hardware-efficient decomposition of any workload. Essential for: =« Higher scalability
Lower costs

* LLM Inference 101
* Challenges with current attention mechanisms
* LeanAttention’s Design

e Evaluation Results

Two stages of LLM Inference

Input Prompt (5 tokens)

(When you pick a pear J

Prefill

Decode

Decode

Prefill Stage

Input Prompt (5 tokens)

(When you pick a pear Attention

Query = Context =5

Query and Context
lengths are the same !

Decode Stage

Input Prompt (5 tokens)

(When you pick a pear Attention
Il

Context =6,

Query=1

Decode Stage

Input Prompt (5 tokens)

Attention \

(When you pick a pear J
Il @ N

Context =7,
Query=1

Context length >> 1
Query Length=1

Scope for parallelism

— eee

Prefill:

Compute-bound
high scope for parallelism:
Along batch, heads, query

Input Prompt (5 tokens)

(When you pick a pear J

Decode:
Memory-bound

low scope for parallelism:
Along batch, heads

Prefill Decode Decode

* Challenges with current attention mechanisms

Imbalanced loads with FlashAttention

Context Length

Map]
=
Rea lashAttention | lleli
Worker 2 — FlashAttention everage_s parallelism
along batch and heads in Decode.
Idle Worker 3 —
Idle Worker 4 = Ex: Severe Underutilization for Model
with 128 heads on a 8x A100 system
ldle Worker5 = with 864 compute cores.
Idle Worker 6 =
Idle Worker 7 =

Question:
What if we split the work of each

: : : : head along the context length ?
* SM = Streaming Multiprocessor i.e. an independent GPU core

Imbalanced loads with FlashDecoding

Context Length / K

v

Idle

Idle

Idle

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

111 13

l

=

...............

FlashDecoding employs fixed-split partitioning

The context of a each head is split to
different SMs.

Fixed number of splits K is chosen (based on
context size, # total heads, # SMs.)

GPU occupancy is dependent on workload

» Perfect occupancy only in cases where
#SMs = 2n (#total _heads)

Reduction overheads scale with K

More splits per head - inefficient use of
register space per SM

Imbalanced loads with Ragged Batching

Context Length

Map £ -
worer 1 2
Req #0 e Highl likelv f .
batch to have the same context
- Idle Worker 3 — length.
= Req #2
o0 Idle Worker 4 =
* Memory Capacity Bounded
e worker 5 —
Req #1
e workers —
Therefore, batching decodes, decode
Idle Worker 7 = + prefill, decode + chunked prefill can
still give imbalanced loads to the
Ragged Batching: Batching requests of unequal context lengths system.

Question: How do we decompose workload to achieve perfect quantization efficiency (100%
GPU Occupancy) for any workload size?

* LeanAttention’s Design

A Lean Decomposition

100% GPU occupancy ==y Equal amount of work per SM wm) Splits of unequal sizes per head

Context Length

Idle Worker 3

Equal work per SM = Total work X / #SMs

) X7 X/7 X/7 X/7 X/7 X/7 X7

& > < > < » < » & » & » P ~
e Or er <« » < » < » < » « » « ” <

Head(Head1l

Idle Worker 5
Idle Worker 6

Idle Worker 7

A Lean Decomposition

100% GPU occupancy ==y Equal amount of work per SM wm) Splits of unequal sizes per head

Context Length

wrkr
vk

Idle

Idle

Idle

Idle

Idle

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

—)

Head > Head

Head O

Head 0 =

Head 0 =

0 1

—>

Output0

O
— Outputl

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

<
Q)
©

.

Inspired by StreamK which does this for GEMMS !

Lean Ragged Batching

Ragged batches can also be decomposed to give equal work per SM

Context Length

_ Map
S
Req #0
orer 2 Worer 2 =
Idle Worker 3 Head 1 Worker 3 —
-E) —>
5 7 LRea#2 —>
Head 1 Idle Worker 4 Worker 4 —
Req #1

LeanAttention: Enabling StreamK-style decomposition

Query

In LeanAttention’s decomposition:

* Some heads get split into unequal portions

LeanAttention: Enabling StreamK decomposition

Query

In LeanAttention’s decomposition:

* Some heads get split into unequal portions

* To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

(@}]

I
Jojesado 9AIIdNPIY

Output

LeanAttention: Enabling StreamK decomposition

Query

(@}]

1

Output

Suijeasai xewyyos

In LeanAttention’s decomposition:

* Some heads get split into unequal portions

* To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

* The reductive operator in LeanAttention is
termed Softmax Re-scaling.

LeanAttention: Enabling StreamK decomposition

Query

Y
Suljeasas xewyjos

Output

In LeanAttention’s decomposition:

Some heads get split into unequal portions

To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

The reductive operator in LeanAttention is
termed Softmax Re-scaling.

We utilize the associativity of Softmax Re-
scaling to enable StreamK partitioning in
LeanAttention without accuracy loss.

e Evaluation Results

Effect on GPU Occupancy in Decode

100.0 28.2
g 80.0
s 66.6 719
© 60.0 51.9 e FlashDecoding:
= 100 373 ' quantization inefficiencies = imbalanced
g 25.7 . loads on GPU - partially occupied SMs.
3 200 :
Q 1537
00
Active Streaming ScratchPad Register File Memory TFLOPS
Multiprocessors Memory Bandwidth

M FlashDecoding M LeanAttention

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute) ;
Decode Workload: 56 heads, single batch, 6k context in the system.

LeanAttention occupies all SMs available

Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

Active Streaming
Multiprocessors

16 24 32 40 48 56 64

Total Number of Heads
B FlashDecoding ® LeanAttention

LeanAttention occupies all SMss available
in the system.

]
[T}
©
i)
c
[}
[S]
—
[}
[a
>
O X
C ~
©
Q.
>
(@]
O
o
%)

Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

GPU Occupancy is contingent on

Active Streaming workload dimensions.

Multiprocessors

16 24 32 40 48 56 64

Total Number of Heads
B FlashDecoding ® LeanAttention

LeanAttention occupies all SMs available
in the system.

]
[T}
©
i)
c
[}
[S]
—
[}
[a
>
O X
C ~
©
Q.
>
(@]
O
o
%)

Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

GPU Occupancy is contingent on

Active Streaming workload dimensions.

Multiprocessors

16 24 32 40 48 56 64

Total Number of Heads
B FlashDecoding ® LeanAttention

LeanAttention occupies all SMs available
in the system for all workload sizes.

]
[T}
©
i)
c
[}
[S]
—
[}
[a
>
O X
C ~
©
Q.
>
(@]
O
o
%)

Evaluation Results

Non-Ragged Decode Ragged Batching
m FlashDecoding mFlashinfer m LeanAttention
(a) Attention Heads = 32, Batch Size = 4 4.0 30%. 2.09
2.5 3.5 60%. 267 30%, 1.45

3.0
2 0
g 2.5
§' 1.5 ©2.0
o s 100%, 1.29
1.5
Q 1 00
@ T
g_1.0
05 205
8
0 0 0.0
16k 32k 64k 128k 256k 512k 1 2 4 8 16 32
Batch Size
Context Length =300 —o=40% —8=50% —o—60% —e=700% —o=80% —=90% =—o=100%
2.18x speedup for 32k or higher context lengths Speedup for different ragged batching cases

Batch context ratio(%) = avg context / max context

Evaluation Results

Decode Kernel Speedups for Various Model Configs

H FlashDecoding ™ LeanAttention

e 1.8 .
o 25 1.4 .
g 2 S1.2 -
C%- 1.5 % 1 0 l___|
1 &08 | 1.07 ONNX RT w/ FD
Al
0 N 0.4
¥ i A 2
y ébg) y QQ’,Q? ¥ ngg’ {bngfb ’\Q;b% /\%g) K %\, é_% %b:\' \\g;e’,\:\/ \\Sb%b.’\ 0
S AN T I 0.0
2 N2 S Y S & =~ N R R
S S G Q ok 16k 32k 48k 64k 80k 96k 112k
Model-BatchSize-ContextLength Input Prompt Length
Deliver speedups in Attention Execution across Models End-to-End speedups for Phi-3 Medium Model

LeanAttention always performs either exactly the same or better than FlashAttention, FlashDecoding

Publicly available on ONNXRuntime !

e Self-attention is the heart of transformer-based models; however it is a time consuming
operation particularly during Decode Phase and Ragged Batching.

e State-of-the-art GPU execution techniques such as FlashAttention, FlashDecode, etc., fail to
utilize the GPU cores (SMs) efficiently leading to increased latencies and costs.

* We propose Lean Attention, which equally distributes the work to all SMs of the GPUs by
leveraging techniques originally developed for simple matrix multiplications.

* To do this, we first identify that the softmax rescaling operation within attention is
associative similar to an addition operation in matrix multiplication and then leveraging
“stream-k” decomposition of work.

e Lean Attention can deliver more than 2.18x speedup over state-of-the art GPU execution
techniques.

Thank you!

https://arxiv.org/abs/2405.10480

https://arxiv.org/abs/2405.10480

	Slide 1
	Slide 2: Why is attention execution important?
	Slide 3: Roadmap
	Slide 4: Two stages of LLM Inference
	Slide 5: Prefill Stage
	Slide 6: Decode Stage
	Slide 7: Decode Stage
	Slide 8: Scope for parallelism
	Slide 9: Roadmap
	Slide 10: Imbalanced loads with FlashAttention
	Slide 11: Imbalanced loads with FlashDecoding
	Slide 12: Imbalanced loads with Ragged Batching
	Slide 13: Roadmap
	Slide 14: A Lean Decomposition
	Slide 15: A Lean Decomposition
	Slide 16: Lean Ragged Batching
	Slide 17: LeanAttention: Enabling StreamK-style decomposition
	Slide 18: LeanAttention: Enabling StreamK decomposition
	Slide 19: LeanAttention: Enabling StreamK decomposition
	Slide 20: LeanAttention: Enabling StreamK decomposition
	Slide 21: Roadmap
	Slide 22: Effect on GPU Occupancy in Decode
	Slide 23: Effect on GPU Occupancy in Decode
	Slide 24: Effect on GPU Occupancy in Decode
	Slide 25: Effect on GPU Occupancy in Decode
	Slide 26: Evaluation Results
	Slide 27: Evaluation Results
	Slide 28: Summary
	Slide 29: Thank you!

