
LeanAttention
Hardware-Aware Scalable Exact Attention Mechanism
Rya Sanovar, Srikant Bharadwaj, Renee St. Amant, Victor Rühle, Saravan Rajmohan

0
100
200
300
400
500
600
700
800
900

0k 20k 40k 60k 80k 100k

La
te

n
cy

 (
s)

Prompt Length

Total Latency PrefillOthers DecodeOthers
PrefillAttention DecodeAttention

Why is attention execution important?

Very slow !!

Support long contexts
>1M tokens

Improves model utility and delivers throughput

Need: A hardware-efficient decomposition of any workload. Essential for:

Lower costs

Faster inference

Higher scalability

Why? SOTA attention mechanisms have low hardware occupancy for these
workloads.

Attention

Ragged Batches:
Batch requests of
unequal context

lengths Decode Attention
takes up 50-60%
of total
processing time !

8:1 token ratio on Phi-3 Medium. Measured on ONNXRuntime.

Roadmap

• LLM Inference 101

• Challenges with current attention mechanisms

• LeanAttention’s Design

• Evaluation Results

Two stages of LLM Inference

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…When you pick a pear

use

use

the

the

claw

…

Prefill DecodeDecode

Input Prompt (5 tokens)

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…

use the claw

use the

Decode Decode

Prefill Stage

Layer 32

Layer 1

Layer 2

…When you pick a pear

…

Prefill

Input Prompt (5 tokens)

Attention

Query = Context = 5

Query and Context
lengths are the same !

Layer 32

Layer 1

Layer 2

…

Prefill

Layer 32

Layer 1

Layer 2

…

use the claw

use the

Decode

Decode Stage

When you pick a pear

…

Input Prompt (5 tokens)

Attention

Context = 6,
Query = 1

Layer 32

Layer 1

Layer 2

…

Decode

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…

DecodePrefill

use the claw

use the

Layer 32

Layer 1

Layer 2

…

Decode

Decode Stage

When you pick a pear

…

Input Prompt (5 tokens)

Attention

Context = 7,
Query = 1

Context length >> 1
Query Length = 1

Scope for parallelism

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…

Layer 32

Layer 1

Layer 2

…When you pick a pear

use

use

the

the

claw

…

Prefill DecodeDecode

Prefill:
Compute-bound
high scope for parallelism:
Along batch, heads, query

Decode:
Memory-bound
low scope for parallelism:
Along batch, heads

Input Prompt (5 tokens)

Roadmap

• LLM Inference 101

• Challenges with current attention mechanisms

• LeanAttention’s Design

• Evaluation Results

Imbalanced loads with FlashAttention

Idle

Head0

Head1

Idle

Idle

Idle

Idle

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Context Length

Req #0
SM 0

SM 6

SM 5

SM 1

SM 2

SM 3

SM 4

GPU

Map

FlashAttention leverages parallelism
along batch and heads in Decode.

Question:
What if we split the work of each
head along the context length ?

Ex: Severe Underutilization for Model
with 128 heads on a 8x A100 system
with 864 compute cores.

* SM = Streaming Multiprocessor i.e. an independent GPU core

Imbalanced loads with FlashDecoding

Head0

Idle

Idle

Idle

Context Length / K

Req #0

Head1

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

SM 0

SM 6

SM 5

SM 1

SM 2

SM 3

SM 4

GPU

Map

Head0

Head1

• The context of a each head is split to
different SMs.

• Fixed number of splits K is chosen (based on

context size, # total heads, # SMs.)

• GPU occupancy is dependent on workload
➢ Perfect occupancy only in cases where

#SMs = 2n (#total_heads)

FlashDecoding employs fixed-split partitioning

• Reduction overheads scale with K

• More splits per head → inefficient use of
register space per SM

W
W

W
W

C0

C1 Output

Imbalanced loads with Ragged Batching

SM 0

SM 6

SM 5

SM 1

SM 2

SM 3

SM 4

GPU

Map

Req #1

Req #2
Idle

Head 0

Head1

Idle

Idle

Idle

Idle

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Context Length

Req #0

B
at

ch

Head 0

Head 1

Head 0

Head 1

• Highly unlikely for requests in a
batch to have the same context
length.

Ragged Batching: Batching requests of unequal context lengths

• Memory Capacity Bounded

Therefore, batching decodes, decode
+ prefill, decode + chunked prefill can
still give imbalanced loads to the
system.

Question: How do we decompose workload to achieve perfect quantization efficiency (100%

GPU Occupancy) for any workload size?

Roadmap

• LLM Inference 101

• Challenges with current attention mechanisms

• LeanAttention’s Design

• Evaluation Results

A Lean Decomposition

Idle

Head0

Head1

Idle

Idle

Idle

Idle

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Context Length

Req #0

Equal amount of work per SM Splits of unequal sizes per head100% GPU occupancy

Equal work per SM = Total work X / #SMs

Head0 Head1

X/7 X/7 X/7 X/7 X/7 X/7 X/7

A Lean Decomposition

Idle

Head 0

Head 1

Idle

Idle

Idle

Idle

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Context Length

Req #0

Equal amount of work per SM Splits of unequal sizes per head

Head 0

Head 0

Head 0

Head
0

Head
1

Head 1

Head 1

Head 1

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

SM 0

SM 6

SM 5

SM 1

SM 2

SM 3

SM 4

GPU

Map

100% GPU occupancy

W
W

W

W
W

W
C

0

Output0

C
1

Output1

Inspired by StreamK which does this for GEMMS !

Lean Ragged Batching

Req #1

Req #2
Idle

Head 0

Head1

Idle

Idle

Idle

Idle

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Context Length

Req #0

B
at

ch

Head 0

Head 1

Head 0

Head 1

Ragged batches can also be decomposed to give equal work per SM

Head 0

Head 1

Head 0

Head 0

Head 1

Head 1

Head 0 Head 1

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

SM 0

SM 6

SM 5

SM 1

SM 2

SM 3

SM 4

GPU

Map

W
W

C
0

C
1

LeanAttention: Enabling StreamK-style decomposition

In LeanAttention’s decomposition:

Query

KV2KV3KV4

• Some heads get split into unequal portions

LeanAttention: Enabling StreamK decomposition

Query

KV2KV3KV4

• Some heads get split into unequal portions

• To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

Õ ÕÕÕ

Output

R
e

d
u

ctive
 o

p
e

rato
r

In LeanAttention’s decomposition:

LeanAttention: Enabling StreamK decomposition

Query

KV2KV3KV4

• Some heads get split into unequal portions

• To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

Õ ÕÕÕ

Output

• The reductive operator in LeanAttention is
termed Softmax Re-scaling.so

ftm
ax re

scalin
g

In LeanAttention’s decomposition:

LeanAttention: Enabling StreamK decomposition

Query

KV2KV3KV4

• Some heads get split into unequal portions

• To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

Õ ÕÕÕ

Output

• The reductive operator in LeanAttention is
termed Softmax Re-scaling.so

ftm
ax re

scalin
g

• We utilize the associativity of Softmax Re-
scaling to enable StreamK partitioning in
LeanAttention without accuracy loss.

In LeanAttention’s decomposition:

Roadmap

• LLM Inference 101

• Challenges with current attention mechanisms

• LeanAttention’s Design

• Evaluation Results

Effect on GPU Occupancy in Decode

51.9

25.7

37.3

18.8

1.5

98.2

66.6
71.9

47.4

3.7

0.0

20.0

40.0

60.0

80.0

100.0

Active Streaming
Multiprocessors

ScratchPad
Memory

Register File Memory
Bandwidth

TFLOPS

R
es

o
u

rc
e

U
ti

liz
at

io
n

 (
%

)

FlashDecoding LeanAttention

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context

LeanAttention occupies all SMs available
in the system.

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU → partially occupied SMs.

Effect on GPU Occupancy in Decode

51.9

25.7

37.3

18.8

1.5

98.2

66.6
71.9

47.4

3.7

0.0

20.0

40.0

60.0

80.0

100.0

Active Streaming
Multiprocessors

ScratchPad
Memory

Register File Memory
Bandwidth

TFLOPS

R
es

o
u

rc
e

U
ti

liz
at

io
n

 (
%

)

FlashDecoding LeanAttention

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU → partially occupied SMs.

LeanAttention occupies all SMs available
in the system.

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context

0

20

40

60

80

100

16 24 32 40 48 56 64

SM
 O

cc
u

p
an

cy
 P

er
ce

n
ta

ge

(%
)

Total Number of Heads

FlashDecoding LeanAttention

Effect on GPU Occupancy in Decode

51.9

25.7

37.3

18.8

1.5

98.2

66.6
71.9

47.4

3.7

0.0

20.0

40.0

60.0

80.0

100.0

Active Streaming
Multiprocessors

ScratchPad
Memory

Register File Memory
Bandwidth

TFLOPS

R
es

o
u

rc
e

U
ti

liz
at

io
n

 (
%

)

FlashDecoding LeanAttention

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU → partially occupied SMs.

GPU Occupancy is contingent on
workload dimensions.

LeanAttention occupies all SMs available
in the system.

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context

0

20

40

60

80

100

16 24 32 40 48 56 64

SM
 O

cc
u

p
an

cy
 P

er
ce

n
ta

ge

(%
)

Total Number of Heads

FlashDecoding LeanAttention

Effect on GPU Occupancy in Decode

51.9

25.7

37.3

18.8

1.5

98.2

66.6
71.9

47.4

3.7

0.0

20.0

40.0

60.0

80.0

100.0

Active Streaming
Multiprocessors

ScratchPad
Memory

Register File Memory
Bandwidth

TFLOPS

R
es

o
u

rc
e

U
ti

liz
at

io
n

 (
%

)

FlashDecoding LeanAttention

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU → partially occupied SMs.

GPU Occupancy is contingent on
workload dimensions.

LeanAttention occupies all SMs available
in the system for all workload sizes.

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context

0

20

40

60

80

100

16 24 32 40 48 56 64

SM
 O

cc
u

p
an

cy
 P

er
ce

n
ta

ge

(%
)

Total Number of Heads

FlashDecoding LeanAttention

Evaluation Results

2.18x speedup for 32k or higher context lengths Speedup for different ragged batching cases

Batch context ratio(%) = avg context / max context

Non-Ragged Decode Ragged Batching

Evaluation Results

LeanAttention always performs either exactly the same or better than FlashAttention, FlashDecoding

Deliver speedups in Attention Execution across Models End-to-End speedups for Phi-3 Medium Model

Publicly available on ONNXRuntime !

Summary

• Self-attention is the heart of transformer-based models; however it is a time consuming
operation particularly during Decode Phase and Ragged Batching.

• State-of-the-art GPU execution techniques such as FlashAttention, FlashDecode, etc., fail to
utilize the GPU cores (SMs) efficiently leading to increased latencies and costs.

• We propose Lean Attention, which equally distributes the work to all SMs of the GPUs by
leveraging techniques originally developed for simple matrix multiplications.

• To do this, we first identify that the softmax rescaling operation within attention is
associative similar to an addition operation in matrix multiplication and then leveraging
“stream-k” decomposition of work.

• Lean Attention can deliver more than 2.18x speedup over state-of-the art GPU execution
techniques.

Thank you!

https://arxiv.org/abs/2405.10480

https://arxiv.org/abs/2405.10480

	Slide 1
	Slide 2: Why is attention execution important?
	Slide 3: Roadmap
	Slide 4: Two stages of LLM Inference
	Slide 5: Prefill Stage
	Slide 6: Decode Stage
	Slide 7: Decode Stage
	Slide 8: Scope for parallelism
	Slide 9: Roadmap
	Slide 10: Imbalanced loads with FlashAttention
	Slide 11: Imbalanced loads with FlashDecoding
	Slide 12: Imbalanced loads with Ragged Batching
	Slide 13: Roadmap
	Slide 14: A Lean Decomposition
	Slide 15: A Lean Decomposition
	Slide 16: Lean Ragged Batching
	Slide 17: LeanAttention: Enabling StreamK-style decomposition
	Slide 18: LeanAttention: Enabling StreamK decomposition
	Slide 19: LeanAttention: Enabling StreamK decomposition
	Slide 20: LeanAttention: Enabling StreamK decomposition
	Slide 21: Roadmap
	Slide 22: Effect on GPU Occupancy in Decode
	Slide 23: Effect on GPU Occupancy in Decode
	Slide 24: Effect on GPU Occupancy in Decode
	Slide 25: Effect on GPU Occupancy in Decode
	Slide 26: Evaluation Results
	Slide 27: Evaluation Results
	Slide 28: Summary
	Slide 29: Thank you!

