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Why is attention execution important?

Support long contexts Grok +
>1M tokens @ % Claude

Improves model utility and delivers throughput
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Prompt Length
8:1 token ratio on Phi-3 Medium. Measured on ONNXRuntime.

Why? SOTA attention mechanisms have low hardware occupancy for these
workloads. :
Faster inference

Need: A hardware-efficient decomposition of any workload. Essential for: =« Higher scalability
Lower costs



* LLM Inference 101
* Challenges with current attention mechanisms
* LeanAttention’s Design

e Evaluation Results



Two stages of LLM Inference
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Prefill Stage
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Decode Stage
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Decode Stage
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Scope for parallelism
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Prefill:

Compute-bound
high scope for parallelism:
Along batch, heads, query
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* Challenges with current attention mechanisms



Imbalanced loads with FlashAttention

Context Length
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Worker 2 — FlashAttention everage_s parallelism
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Idle Worker 3 —
Idle Worker 4 = Ex: Severe Underutilization for Model
with 128 heads on a 8x A100 system
ldle  Worker5 = with 864 compute cores.
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Question:
What if we split the work of each

: : : : head along the context length ?
* SM = Streaming Multiprocessor i.e. an independent GPU core



Imbalanced loads with FlashDecoding
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FlashDecoding employs fixed-split partitioning

The context of a each head is split to
different SMs.

Fixed number of splits K is chosen (based on
context size, # total heads, # SMs.)

GPU occupancy is dependent on workload

» Perfect occupancy only in cases where
#SMs = 2n (#total _heads)

Reduction overheads scale with K

More splits per head - inefficient use of
register space per SM



Imbalanced loads with Ragged Batching

Context Length

Map £ -
worer 1 2
Req #0 e Highl likelv f .
batch to have the same context
- Idle Worker 3 — length.
= Req #2
o0 Idle Worker 4 =
* Memory Capacity Bounded
e worker 5 —
Req #1
e workers —
Therefore, batching decodes, decode
Idle Worker 7 = + prefill, decode + chunked prefill can
still give imbalanced loads to the
Ragged Batching: Batching requests of unequal context lengths system.

Question: How do we decompose workload to achieve perfect quantization efficiency (100%
GPU Occupancy) for any workload size?



* LeanAttention’s Design



A Lean Decomposition

100% GPU occupancy ==y Equal amount of work per SM wm) Splits of unequal sizes per head
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A Lean Decomposition

100% GPU occupancy ==y Equal amount of work per SM wm) Splits of unequal sizes per head
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Inspired by StreamK which does this for GEMMS !
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Lean Ragged Batching

Ragged batches can also be decomposed to give equal work per SM
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LeanAttention: Enabling StreamK-style decomposition

Query

In LeanAttention’s decomposition:

* Some heads get split into unequal portions




LeanAttention: Enabling StreamK decomposition

Query

In LeanAttention’s decomposition:

* Some heads get split into unequal portions

* To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.
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LeanAttention: Enabling StreamK decomposition
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In LeanAttention’s decomposition:

* Some heads get split into unequal portions

* To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

* The reductive operator in LeanAttention is
termed Softmax Re-scaling.



LeanAttention: Enabling StreamK decomposition

Query

Y
Suljeasas xewyjos

Output

In LeanAttention’s decomposition:

Some heads get split into unequal portions

To correctly reduce their partial outputs, the
reductive operator must be associative in
nature.

The reductive operator in LeanAttention is
termed Softmax Re-scaling.

We utilize the associativity of Softmax Re-
scaling to enable StreamK partitioning in
LeanAttention without accuracy loss.



e Evaluation Results



Effect on GPU Occupancy in Decode

100.0 28.2
g 80.0
s 66.6 719
© 60.0 51.9 e FlashDecoding:
= 100 373 ' quantization inefficiencies = imbalanced
g 25.7 . loads on GPU - partially occupied SMs.
3 200 :
Q 1537
00
Active Streaming  ScratchPad Register File Memory TFLOPS
Multiprocessors Memory Bandwidth

M FlashDecoding M LeanAttention

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute) ;
Decode Workload: 56 heads, single batch, 6k context in the system.

LeanAttention occupies all SMs available



Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

Active Streaming
Multiprocessors
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Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

GPU Occupancy is contingent on

Active Streaming workload dimensions.

Multiprocessors
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Total Number of Heads
B FlashDecoding ® LeanAttention

LeanAttention occupies all SMs available
in the system.
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Effect on GPU Occupancy in Decode

FlashDecoding:
quantization inefficiencies = imbalanced
loads on GPU - partially occupied SMs.

GPU Occupancy is contingent on

Active Streaming workload dimensions.

Multiprocessors

16 24 32 40 48 56 64

Total Number of Heads
B FlashDecoding ® LeanAttention

LeanAttention occupies all SMs available
in the system for all workload sizes.
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Evaluation Results

Non-Ragged Decode Ragged Batching
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Batch context ratio(%) = avg context / max context



Evaluation Results

Decode Kernel Speedups for Various Model Configs
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LeanAttention always performs either exactly the same or better than FlashAttention, FlashDecoding

Publicly available on ONNXRuntime !



e Self-attention is the heart of transformer-based models; however it is a time consuming
operation particularly during Decode Phase and Ragged Batching.

e State-of-the-art GPU execution techniques such as FlashAttention, FlashDecode, etc., fail to
utilize the GPU cores (SMs) efficiently leading to increased latencies and costs.

* We propose Lean Attention, which equally distributes the work to all SMs of the GPUs by
leveraging techniques originally developed for simple matrix multiplications.

* To do this, we first identify that the softmax rescaling operation within attention is
associative similar to an addition operation in matrix multiplication and then leveraging
“stream-k” decomposition of work.

e Lean Attention can deliver more than 2.18x speedup over state-of-the art GPU execution
techniques.




Thank you!

https://arxiv.org/abs/2405.10480



https://arxiv.org/abs/2405.10480
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