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Why is attention execution important?

Very slow !! 

Support long contexts
>1M tokens

Improves model utility and delivers throughput

Need: A hardware-efficient decomposition of any workload. Essential for:

Lower costs

Faster inference

Higher scalability

Why? SOTA attention mechanisms have low hardware occupancy for these 
workloads.

Attention

Ragged Batches:
Batch requests of 
unequal context 

lengths Decode Attention 
takes up 50-60% 
of total 
processing time !

8:1 token ratio on Phi-3 Medium. Measured on ONNXRuntime.



Roadmap

• LLM Inference 101

• Challenges with current attention mechanisms

• LeanAttention’s Design

• Evaluation Results



Two stages of LLM Inference
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Query = Context = 5

Query and Context 
lengths are the same !
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Scope for parallelism
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Prefill: 
Compute-bound
high scope for parallelism: 
Along batch, heads, query

Decode: 
Memory-bound
low scope for parallelism: 
Along batch, heads

Input Prompt (5 tokens)
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Imbalanced loads with FlashAttention
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FlashAttention leverages parallelism 
along batch and heads in Decode.

Question: 
What if we split the work of each 
head along the context length ?

Ex: Severe Underutilization for Model 
with 128 heads on a 8x A100 system 
with 864 compute cores.

* SM =  Streaming Multiprocessor i.e. an independent GPU core



Imbalanced loads with FlashDecoding
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• The context of a each head is split to 
different SMs. 

• Fixed number of splits K is chosen (based on 

context size, # total heads, # SMs.)

• GPU occupancy is dependent on workload
➢ Perfect occupancy only in cases where 

#SMs = 2n (#total_heads)

FlashDecoding employs fixed-split partitioning

• Reduction overheads scale with K

• More splits per head → inefficient use of 
register space per SM
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Imbalanced loads with Ragged Batching
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• Highly unlikely for requests in a 
batch to have the same context 
length. 

Ragged Batching: Batching requests of unequal context lengths

• Memory Capacity Bounded

Therefore, batching decodes, decode 
+ prefill, decode + chunked prefill can 
still give imbalanced loads to the 
system.

Question: How do we decompose workload to achieve perfect quantization efficiency (100% 

GPU Occupancy) for any workload size?
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A Lean Decomposition
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A Lean Decomposition
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Inspired by StreamK which does this for GEMMS !



Lean Ragged Batching
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Ragged batches can also be decomposed to give equal work per SM
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LeanAttention: Enabling StreamK-style decomposition

In LeanAttention’s decomposition:

Query
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• Some heads get split into unequal portions



LeanAttention: Enabling StreamK decomposition
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LeanAttention: Enabling StreamK decomposition

Query

KV2KV3KV4

• Some heads get split into unequal portions

• To correctly reduce their partial outputs, the 
reductive operator must be associative in 
nature.

Õ ÕÕÕ

Output

• The reductive operator in LeanAttention is 
termed Softmax Re-scaling.so

ftm
ax re

scalin
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• We utilize the associativity of Softmax Re-
scaling to enable StreamK partitioning in 
LeanAttention without accuracy loss.

In LeanAttention’s decomposition:
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Effect on GPU Occupancy in Decode
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FlashDecoding LeanAttention

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context

LeanAttention occupies all SMs available 
in the system.

FlashDecoding:
quantization inefficiencies = imbalanced 
loads on GPU → partially occupied SMs.



Effect on GPU Occupancy in Decode
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FlashDecoding:
quantization inefficiencies = imbalanced 
loads on GPU → partially occupied SMs.

LeanAttention occupies all SMs available 
in the system.

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
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Effect on GPU Occupancy in Decode

51.9

25.7

37.3

18.8

1.5

98.2

66.6
71.9

47.4

3.7

0.0

20.0

40.0

60.0

80.0

100.0

Active Streaming
Multiprocessors

ScratchPad
Memory

Register File Memory
Bandwidth

TFLOPS

R
es

o
u

rc
e 

U
ti

liz
at

io
n

 (
%

)

FlashDecoding LeanAttention

FlashDecoding:
quantization inefficiencies = imbalanced 
loads on GPU → partially occupied SMs.

GPU Occupancy is contingent on 
workload dimensions.

LeanAttention occupies all SMs available 
in the system.
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Effect on GPU Occupancy in Decode
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FlashDecoding LeanAttention

FlashDecoding:
quantization inefficiencies = imbalanced 
loads on GPU → partially occupied SMs.

GPU Occupancy is contingent on 
workload dimensions.

LeanAttention occupies all SMs available 
in the system for all workload sizes.

GPU: on Nvidia-A100-80GB GPU (Measured on Nsight Compute)
Decode Workload: 56 heads, single batch, 6k context
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Evaluation Results

2.18x speedup for 32k or higher context lengths Speedup for different ragged batching cases

Batch context ratio(%) =  avg context / max context

Non-Ragged Decode Ragged Batching



Evaluation Results

LeanAttention always performs either exactly the same or better than FlashAttention, FlashDecoding

Deliver speedups in Attention Execution across Models End-to-End speedups for Phi-3 Medium Model

Publicly available on ONNXRuntime !



Summary

• Self-attention is the heart of transformer-based models; however it is a time consuming 
operation particularly during Decode Phase and Ragged Batching.

• State-of-the-art GPU execution techniques such as FlashAttention, FlashDecode, etc., fail to 
utilize the GPU cores (SMs) efficiently leading to increased latencies and costs.

• We propose Lean Attention, which equally distributes the work to all SMs of the GPUs by 
leveraging techniques originally developed for simple matrix multiplications.

• To do this, we first identify that the softmax rescaling operation within attention is 
associative similar to an addition operation in matrix multiplication and then leveraging 
“stream-k” decomposition of work.

• Lean Attention can deliver more than 2.18x speedup over state-of-the art GPU execution 
techniques.



Thank you!

https://arxiv.org/abs/2405.10480

https://arxiv.org/abs/2405.10480
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