
Youmu: Efficient Columnar Data Pipeline for
LLM Training

Tianle Zhong 1 Jiechen Zhao 2 Qiang Su 3 Geoffrey Fox 1

1University of Virginia

2University of Toronto

3The Chinese University of Hong Kong

May 14, 2025

Youmu MLSys 2025 May 14, 2025 1 / 20

What Format is Your LLM Dataset?

Large language model (LLM) training datasets are web-scale.
▶ PiB-level raw data; TiB-level cleaned data.
▶ Massive data preprocessing.
▶ Needs to reside on costly high performance storage.

Many training frameworks and datasets are using JSONL, but we know
that it is not an ideal choice for managing such amount of data.

Youmu MLSys 2025 May 14, 2025 2 / 20

Data preparation in Parquet; Why not Training?

x0

x1

y0

y1

Row Group 0

Row Group 1

Column Chunk x0

Column Chunk y0

Column Chunk x1

Column Chunk y1

column x column y
page 0

page 1

page 0

page 1

page 0

page 1

page 0

page 1

(a) Logical Representation (b) Physical Layout

Figure 1: Parquet logical and physical layouts.

With Parquet, data preparation reuses existing data infrastructure for
analytical workload.
▶ Designed for scan-based operations.
▶ Optimized for block storage.
▶ High compression rate to reduce storage cost.

However, Parquet is inefficient with random access, a key procedure for
data shuffling to ensure model accuracy.

Youmu MLSys 2025 May 14, 2025 3 / 20

Costly Pit-stops between Preparation and Training

Columnar Dataset

Pit-Stop: Transforming
formats of TB-scale dataset

Training Process

Columnar Dataset

Conversion

Training Process

Direct Fine-grained
Data Access

(a) Conventional (a) Youmu

Extra
Storage/DRAM Shuffle Process

The current practice is to convert & pre-shuffle columnar data into other
formats like JSONL.
▶ 3× more storage capacity needed on costly performant storage.
▶ Break single truth of data.
▶ Additional human efforts to keep up with ever evolving datasets with

new data and preprocessing refinement.

Youmu MLSys 2025 May 14, 2025 4 / 20

Existing Solutions

Moving data into distributed memory before training (Ray/Spark).

▶ High memory footprint.
• Host memory contention with other key functionalities like model

checkpointing.

▶ Complexity with distributed memory
• Issues with object store over RDMA
• Network contention with GPU traffic.

Youmu MLSys 2025 May 14, 2025 5 / 20

Existing Solutions (cont.)

▶ Disk-backed memory mapping (HuggingFace Datasets).
• Unsatisfactory throughput due to thrashing (page faults).

▶ Streaming I/O-based local shuffle.
• Obvious model accuracy loss due to limited shuffle quality .

Figure 2: Mmap file I/O [1]

0 1 2 3 4 5 6

1, 2 3,54,0

Data on the disk 97 8

Batch 0 Batch 1 Batch 2

0 1 2 3 4DRAM space

Buffer size

Read

Shuffle

1 2 4 0 3DRAM space

5

5

Figure 3: Streaming shuffle.

Youmu MLSys 2025 May 14, 2025 6 / 20

Our Goals

We aim to stay with one consistent columnar format for training data
pipeline, and achieves
▶ Controlled DRAM footprint (against distributed memory).

• provide memory resilience for other critical functionalities like tensor
offloading and model checkpointing.

▶ Sufficient throughput (against MMap I/O).
• Avoid data starvation for GPU utilization.

▶ High shuffle quality (against local shuffle).
• Ensure model accuracy.

Youmu MLSys 2025 May 14, 2025 7 / 20

Observation 1: Marginal Benefits of Caching

Dataset

Cached in Memory On Disk

Collect Data Batch

Bottleneck

Figure 4: Disk I/O remains as bottleneck

Access to the same row is exactly once per epoch.
▶ Marginal benefits of caching unless the dataset fully cached.

• Same observations from [2], [3].

Youmu MLSys 2025 May 14, 2025 8 / 20

Observation 2: Granularity Gap

Fine-grained shuffling vs. Coarse-grained columnar chunk I/O
▶ Consume rows but have to read chunks.

• Tens of KB vs. Hundreds of MB (<0.1% effective bandwidth)

▶ Waste a lot disk I/O bandwidth.
• Low goodput. Data fed into CPU but most never used by GPU.

Figure 5: A lot of I/O bandwidth is wasted due to the granularity gap.

Youmu MLSys 2025 May 14, 2025 9 / 20

Youmu’s Page-level I/O Granularity

Page 0

Page 1

Page N

Column Chunk

Column Chunk

Default Parquet
I/O Granularity

Youmu Page-level
I/O Granularity

Figure 6: Page-level I/O.

▶ Friendly I/O size for SSD.
▶ Many pages to shuffle.
▶ Improved I/O goodput.

Challenge: How to navigate
dataset to read random page?

Youmu MLSys 2025 May 14, 2025 10 / 20

Youmu Overview

Dataset Interface

Dataset FilesStorage

Global Page
Index Store Page Fetcher

Index
Translator Page DecoderYoumu

PageMetadata

 Control Path Data Path

Index Buffer

Training Tasks

App

API

Figure 7: Youmu system overview.

Design highlights:
▶ No cache, only buffer.

• From Observation 1.
▶ Fine-grained page-level I/O.

• From Observation 2.
▶ Practical compatibility.

• Directly works with widely
adopted Parquet.

Youmu MLSys 2025 May 14, 2025 11 / 20

Control Path: Global Page Index

Page Addr

Page Addr

Page Addr

Page Addr

Page Addr

Page Addr

PageIdx 0

Col_ck 0 Col_ck 1 Col_ck 2

PageIdx 1

PageOffset_ColCk x x+y x+y+z

PageOffset_File[0] x+y+z
File 0

File 1

Figure 8: Global page index.

▶ A 3-dim index across file, column chunk and page locations.
• Lightweight initialization since only metadata needed.

▶ Layered binary search-based index translation.
• Given random page order, page data locations are searched

layer-by-layer based on page number offsets of each layer.

Youmu MLSys 2025 May 14, 2025 12 / 20

Data Path

Refill
threshold

In-buffer
data

Fetch
page

New
page

Buffer
shuffle

Figure 9: Aggressive buffer shuffle.

▶ Aggressive buffer shuffle.
• Based on the fact: page size < buffer size.
• Shuffle rows in buffer upon the arrival of each new page.
• Better shuffle quality than standard buffer shuffle at initialization.

Youmu MLSys 2025 May 14, 2025 13 / 20

Implementation

▶ Rust runtime.
• Based on official Rust implementation of Apache Parquet and Arrow.

▶ Python APIs.
• Can be directly integrated with PyTorch Dataset interface.
• User-defined in-memory pipelines for last-mile preprocessing.
• Zero-copy conversion to various dataframe and tensor formats

enabled by Arrow memory model ecosystem.

▶ Full shuffle support.
• Support full shuffle by extracting a random row from retrieved page.
• Sacrifice throughput for perfect shuffle when needed.

Youmu MLSys 2025 May 14, 2025 14 / 20

Evaluation: Model Accuracy

50 60 70 80 90 100 110 120
Steps (k)

20

21

22

23

Pe
rp

le
xi

ty

20.1420.09
20.2620.37

Row
Page (10KB)
Page (1MB)
Streaming

Figure 10: Model accuracy at different training steps

Key Take-away
▶ A small page (10KB) achieves competitive quality to row shuffling.
▶ A big page (1MB) still outperforms streaming shuffle.

Youmu MLSys 2025 May 14, 2025 15 / 20

Evaluation: Memory footprint & Latency

240 470 710 960 1500
Dataset Sizes (Billion Tokens)

3050
100
150

No
de

 M
em

. (
GB

)

OOD OOD

RayData (full)
RayData (chunk)

Youmu (page)
Youmu (full)

Figure 11: Memory footprint per node
against dataset sizes on 16 nodes.

2 4 8 16
Number of Nodes

0.0010.003

0.4
310

Av
g.

 S
te

p
La

te
nc

y
(s

)

GPU No Data Waiting Threshold (1.9s)

Youmu (page)
RayData (chunk)
RayData (full)

Youmu (full)
HuggingFace

Figure 12: Iteration batch latency
against a 200B dataset.

TL;DR
Youmu can achieve sufficiently low latency to avoid GPU idleness while
keeping very low memory overheads

Youmu MLSys 2025 May 14, 2025 16 / 20

Conclusion

▶ Youmu preserves I/O and memory efficiency for LLMs training on
columnar data storage with high shuffle quality and throughput.

• Abandon use of cache to reduce memory overheads.
• Page-level I/O to improve goodput.
• KB-level page size provides sufficient shuffle quality.

Youmu MLSys 2025 May 14, 2025 17 / 20

References

[1] A. Haderbache, S. Stanovnik, M. Miwa, and K. Nakashima, “Design
of a data supply mechanism for distributed deep learning,”, Jul.
2017.

[2] Y. Zhu, F. Chowdhury, H. Fu, et al., “Entropy-aware i/o pipelining
for large-scale deep learning on hpc systems,” in 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2018,
pp. 145–156. doi: 10.1109/MASCOTS.2018.00023.

[3] A. V. Kumar and M. Sivathanu, “Quiver: An informed storage cache
for deep learning,” in 18th USENIX Conference on File and Storage
Technologies (FAST 20), Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 283–296, isbn: 978-1-939133-12-0. [Online].
Available: https:
//www.usenix.org/conference/fast20/presentation/kumar.

Youmu MLSys 2025 May 14, 2025 18 / 20

https://doi.org/10.1109/MASCOTS.2018.00023
https://www.usenix.org/conference/fast20/presentation/kumar
https://www.usenix.org/conference/fast20/presentation/kumar

Thank You for Your Attention

Q & A Time! :)

Youmu MLSys 2025 May 14, 2025 19 / 20

Evaluation: Initialization Time (Shuffle Wall)

240 470 710 960 1500
Dataset Sizes (Billion Tokens)

0
1,000
2,000
3,000
4,000

Sh
uf

fle
 W

al
l T

im
e

(s
)

OOD OOD

RayData (full) RayData (chunk)

Figure 13: Shuffle wall time required by Ray Data on 16 nodes.

As a comparison, Youmu only requires less than 10 seconds at
initialization to fetch metadata and build global page index.

Youmu MLSys 2025 May 14, 2025 20 / 20

	References

