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What Format is Your LLM Dataset?

Large language model (LLM) training datasets are web-scale.
▶ PiB-level raw data; TiB-level cleaned data.
▶ Massive data preprocessing.
▶ Needs to reside on costly high performance storage.

Many training frameworks and datasets are using JSONL, but we know
that it is not an ideal choice for managing such amount of data.
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Data preparation in Parquet; Why not Training?
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Figure 1: Parquet logical and physical layouts.

With Parquet, data preparation reuses existing data infrastructure for
analytical workload.
▶ Designed for scan-based operations.
▶ Optimized for block storage.
▶ High compression rate to reduce storage cost.

However, Parquet is inefficient with random access, a key procedure for
data shuffling to ensure model accuracy.
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Costly Pit-stops between Preparation and Training
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The current practice is to convert & pre-shuffle columnar data into other
formats like JSONL.
▶ 3× more storage capacity needed on costly performant storage.
▶ Break single truth of data.
▶ Additional human efforts to keep up with ever evolving datasets with

new data and preprocessing refinement.
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Existing Solutions

Moving data into distributed memory before training (Ray/Spark).

▶ High memory footprint.
• Host memory contention with other key functionalities like model

checkpointing.

▶ Complexity with distributed memory
• Issues with object store over RDMA
• Network contention with GPU traffic.
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Existing Solutions (cont.)

▶ Disk-backed memory mapping (HuggingFace Datasets).
• Unsatisfactory throughput due to thrashing (page faults).

▶ Streaming I/O-based local shuffle.
• Obvious model accuracy loss due to limited shuffle quality .

Figure 2: Mmap file I/O [1]
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Figure 3: Streaming shuffle.
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Our Goals

We aim to stay with one consistent columnar format for training data
pipeline, and achieves
▶ Controlled DRAM footprint (against distributed memory).

• provide memory resilience for other critical functionalities like tensor
offloading and model checkpointing.

▶ Sufficient throughput (against MMap I/O).
• Avoid data starvation for GPU utilization.

▶ High shuffle quality (against local shuffle).
• Ensure model accuracy.
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Observation 1: Marginal Benefits of Caching
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Figure 4: Disk I/O remains as bottleneck

Access to the same row is exactly once per epoch.
▶ Marginal benefits of caching unless the dataset fully cached.

• Same observations from [2], [3].
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Observation 2: Granularity Gap

Fine-grained shuffling vs. Coarse-grained columnar chunk I/O
▶ Consume rows but have to read chunks.

• Tens of KB vs. Hundreds of MB (<0.1% effective bandwidth)

▶ Waste a lot disk I/O bandwidth.
• Low goodput. Data fed into CPU but most never used by GPU.

Figure 5: A lot of I/O bandwidth is wasted due to the granularity gap.
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Youmu’s Page-level I/O Granularity
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Figure 6: Page-level I/O.

▶ Friendly I/O size for SSD.
▶ Many pages to shuffle.
▶ Improved I/O goodput.

Challenge: How to navigate
dataset to read random page?
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Youmu Overview
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Figure 7: Youmu system overview.

Design highlights:
▶ No cache, only buffer.

• From Observation 1.
▶ Fine-grained page-level I/O.

• From Observation 2.
▶ Practical compatibility.

• Directly works with widely
adopted Parquet.
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Control Path: Global Page Index
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Figure 8: Global page index.

▶ A 3-dim index across file, column chunk and page locations.
• Lightweight initialization since only metadata needed.

▶ Layered binary search-based index translation.
• Given random page order, page data locations are searched

layer-by-layer based on page number offsets of each layer.
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Figure 9: Aggressive buffer shuffle.

▶ Aggressive buffer shuffle.
• Based on the fact: page size < buffer size.
• Shuffle rows in buffer upon the arrival of each new page.
• Better shuffle quality than standard buffer shuffle at initialization.
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Implementation

▶ Rust runtime.
• Based on official Rust implementation of Apache Parquet and Arrow.

▶ Python APIs.
• Can be directly integrated with PyTorch Dataset interface.
• User-defined in-memory pipelines for last-mile preprocessing.
• Zero-copy conversion to various dataframe and tensor formats

enabled by Arrow memory model ecosystem.

▶ Full shuffle support.
• Support full shuffle by extracting a random row from retrieved page.
• Sacrifice throughput for perfect shuffle when needed.
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Evaluation: Model Accuracy
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Figure 10: Model accuracy at different training steps

Key Take-away
▶ A small page (10KB) achieves competitive quality to row shuffling.
▶ A big page (1MB) still outperforms streaming shuffle.
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Evaluation: Memory footprint & Latency
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Figure 11: Memory footprint per node
against dataset sizes on 16 nodes.
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Figure 12: Iteration batch latency
against a 200B dataset.

TL;DR
Youmu can achieve sufficiently low latency to avoid GPU idleness while
keeping very low memory overheads

Youmu MLSys 2025 May 14, 2025 16 / 20



Conclusion

▶ Youmu preserves I/O and memory efficiency for LLMs training on
columnar data storage with high shuffle quality and throughput.

• Abandon use of cache to reduce memory overheads.
• Page-level I/O to improve goodput.
• KB-level page size provides sufficient shuffle quality.
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Thank You for Your Attention

Q & A Time! :)
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Evaluation: Initialization Time (Shuffle Wall)
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Figure 13: Shuffle wall time required by Ray Data on 16 nodes.

As a comparison, Youmu only requires less than 10 seconds at
initialization to fetch metadata and build global page index.
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