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Multimodal Foundation Models for Plan Generation
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LLM-Planner: Few-Shot Grounded Planning for Embodied Agents
with Large Language Models
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Addressing uncertainty in both perception and decision-making
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Where Does The Uncertainty Come From?
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Multimodal Foundation Models for Plan Generation
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The Central Question

How can we design an automated and reliable framework that enables uncertainty
guantification and targeted interventions for robust perception and planning using multimodal

foundation models?

Limitations of Existing Works

1) Provide an aggregate “black block” estimate of uncertainty, lacking insight into whether uncertainty originates from

perception or decision-making flaws.

2) Obscure root cause of performance issues which hinders targeted improvements and leads to 1 queries and | performance.

3) Require human-labelling for calibration (not scalable).



Existing Works

..-_"‘-—-

33;545"" ..
!.'i.ol'l“

Human

@ Place the bowl in the microwave, please.

Robot

Which one, plastic or metal?

Human

@ The plastic one, please.

Environment Context

There is a microwave, a landfill bin, a
recycling bin, and a compost bin.

Robot Observations

Observations: | see a metal bowl and
a plastic bowl on the counter.

LLM Next Step Prediction with Confidence

Possible next steps:

0.44 - Put plastic bowl in microwave.
0.41 - Put metal bowl in microwave.
0.03 - Put metal bowl in landfill bin

Prediction Set from Conformal Prediction

Conformal prediction threshold: 0.2
Steps with scores above threshold:

0.44 - Put plastic bowl in microwave.
0.41 - Put metal bowl in microwave.

Trigger Human Help

Prediction size 2 > 1 — ask for help.

LLM Generates Question

Question: Which one, plastic or metal?

Robots that ask for help: Uncertainty alignment for large language model planners, CoRL 2023
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» We present a novel framework to disentangle and quantify the inherent source of
uncertainty in multimodal foundation models into:

= Perception uncertainty associated with the model's visual processing capabilities and
= Decision uncertainty linked to its ability to generate actionable plans

» We quantify each source using novel quantification methods — conformal
prediction and Formal-Methods-Driven Prediction (FMDP), leveraging symbolic
representations and formal verification techniques for theoretical guarantees

» We implement a via targeted interventions: active sensing
and automated model refinement.

» Empirical validation in real-world and simulated robotic tasks demonstrate that our

framework reduces variability by up to 40% and enhances task success rates by 5%
compared to baselines.




A Brief Outline ’%§

=  Qverview of the framework

= Perception and decision uncertainty
= Quantifying perception uncertainty: conformal prediction
= Decision uncertainty: formal-methods-driven prediction (FMDP)

= Targeted interventions to reduce uncertainty

= Efficient online inference via active sensing

= Automated fine-tuning with probabilistic guarantees
= Experimental results

= Takeaways



Overview of the Framework g
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Perception Uncertainty o)
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g At least 80% probability of being correct

Non-Conformity Scores from Calibration Data ] 0.32
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class scores, {5} class
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g

Confidence score threshold 0.32

At least 80% probability of being correct

Perception Uncertainty Score

» Atheoretical lower bound on the probability of correctly identifying objects
In the iImage
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Decision Uncertainty e

Decision Uncertainty Score

» Given a set of specifications,
expressed in temporal logic,

» A decision uncertainty score of a @
plan is a theoretical lower bound

probability of the plan satisfying the
specifications 1. The traffic light is green and
there are no pedestrians
2. Move forward

[ Go straight at the traffic light ]

Specifications (in temporal logic): PTTTTTITTIEEEISS ST \

How can we check
hether the plan satisfies
the logical specifications?

[J(—green traffic light — —go straight),

=

[J(stop sign — ¢ stop),

Decision Uncertainty Score=0.7  Soom-ooo--oo---oo-
“at least 70% probability that the plan satisfies the specifications”



Automated Fine-tuning With Probabllistic Guarantees ﬂg
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Obtaining High-quality Fine-tuning Data Without HIL 22

[ Go straight at the intersection ] Controller Construction

The traffic light is green
Stop at the intersection
Walit for pedestrian
Move forward

W

Confidence 0.25

Algorithm 1: Natural Language to Kripke Structures

input textual instruction 7", atomic proposition set AP, gresn Stopf&\vfl i forward
set Y of observed objects 4@ o 92
output (Q, qo, 0, ) U
Ph = {Phy, Pha, ...} = parse(T)

@, =1[qol, [1 {Define a set of states and transitions. g

denotes initial states}

AMgo) =Y NAP {The initial state’s label is the
observed objects from the image } _ _
for Ph; in Ph [J(—green traffic light — —go straight),

Q.append(qg;), 0.append((g;—1, q:)),
Mgi;) ={p€ AP :p € Ph;}
end for [J(green light A —pedestrian — o —wait) ,x
Q'append(Qdone)a 5-append((Q|Ph| ) qdone))a
5°append(Qdonea Qdone))a /\(Qdone) — (D

[I(stop sign — ¢ stop),
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Obtaining High-quality Fine-tuning Data Without HIL

[ Go straight at the intersection ]

Controller Construction

1. The traffic light is green
2. Move forward

Algorithm 1: Natural Language to Kripke Structures

input textual instruction 7', atomic proposition set AP, green forward €

set Y of observed objects

) q1 :fqzx —{ (3
OUtPUt (QJ 40, 5: /\) U
Ph = {Phq, Pha, ...} = parse(T)

Q, 0 =[qol, [1 {Define a set of states and transitions. g
denotes initial states}

AMgo) =Y NAP {The initial state’s label is the

observed objects from the image } i .

for Ph, in Ph [J(—green traffic light — —go straight),
Mgi) ={p € AP :p € Ph;} (stop sig O stop),

end for [J(green light A —pedestrian — o —wait),

Q-append(Qdone)a 5-aPPeHd((Q|Ph| y Qdone)),
5-append(Qdonea Qdone))a )\(Qdone) — @




Automated Fine-tuning With Probabllistic Guarantees ﬂg
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Active Sensing at Inference g
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Qualitative Demonstrations
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Quantitative Results Qg
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Key Contributions:

(1) Identification and disentanglement of the source of uncertainty in multimodal foundation
models into:
o Perception uncertainty associated with the model's visual processing capabilities
o Decision uncertainty linked to its ability to generate actionable plans

(2) Uncertainty-guided targeted interventions: scalable model fine-tuning (offline) and active
sensing (online)

(3) Reduction of decision variability by up to 40% with a single re-query and up to 2x increase in
number of specifications satisfied
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WHAT STARTS HERE CHANGES THE WORLD

Know Where You’re Uncertain When Planning with
Multimodal Foundation Models: A Formal Framework

Neel P. Bhatt*, Yunhao Yang*, Rohan Siva, Daniel Milan, Ufuk Topcu, Zhangyang Wang

Thank you!
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