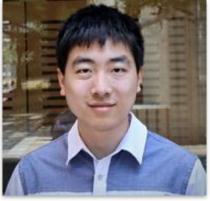
Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework

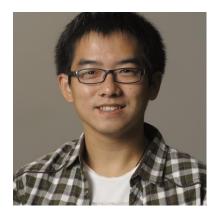
Neel P. Bhatt*



Yunhao Yang*

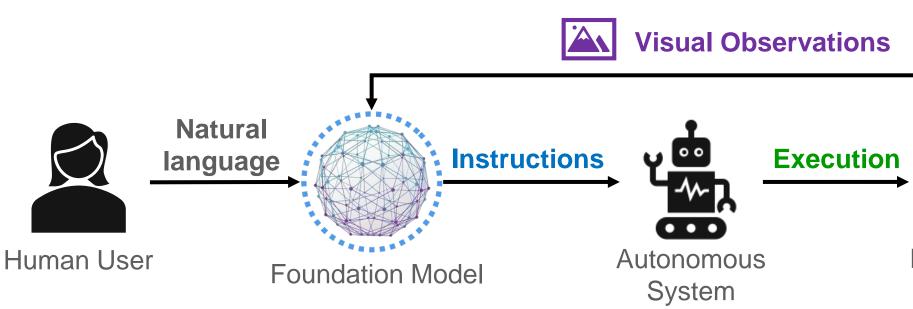
Rohan Siva

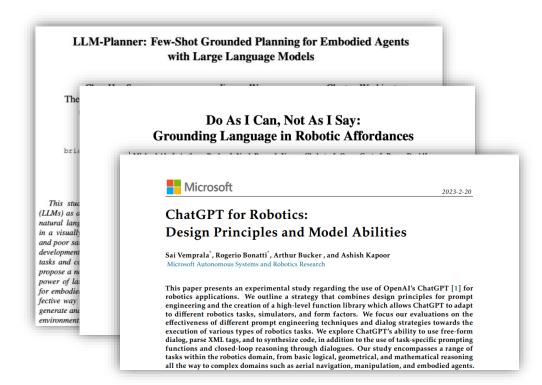
CENTER FOR autonomy



Zhangyang (Atlas) Wang

Multimodal Foundation Models for Plan Generation

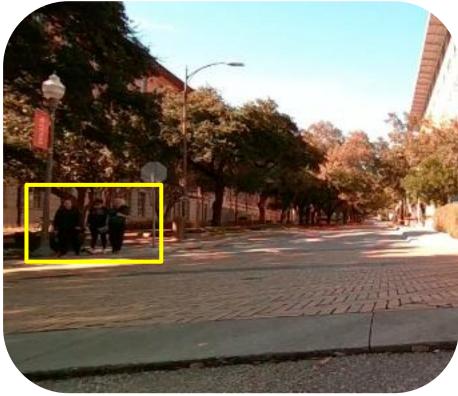


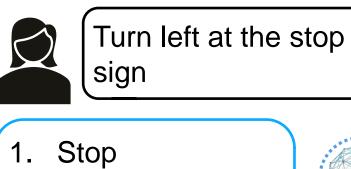


Multimodal foundation models offer a **natural interface** for robotic perception and planning by processing sensory inputs and natural language to generate actionable plans.

Addressing uncertainty in both perception and decision-making remains a critical challenge for ensuring task reliability.

Where Does The Uncertainty Come From?





- 2 Wait for
- pedestrians
- 3. Turn left

Perception (Visual Obs.) ➢ Image Artifacts ➢ Lighting ➢ Occlusion ➢

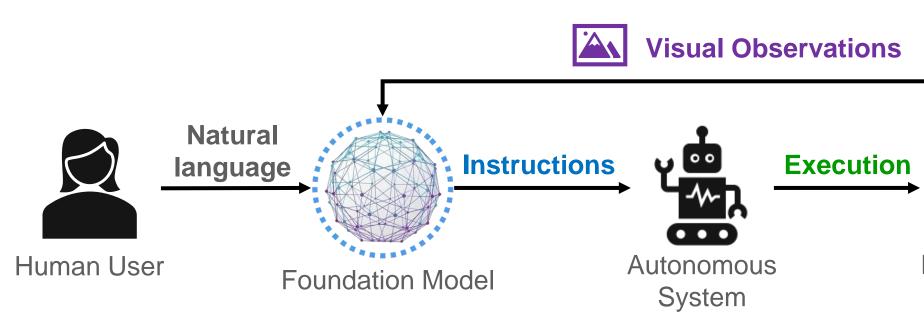
Decision (Text Generation)

Prompt-image inconsistency

▶

- Failure to capture critical image information
- Failure to incorporate safety rules

Multimodal Foundation Models for Plan Generation



The Central Question

How can we design an <u>automated</u> and <u>reliable</u> framework that enables **uncertainty** quantification and targeted interventions for robust perception and planning using multimodal foundation models?

Limitations of Existing Works

- 1) Provide an aggregate "black block" estimate of uncertainty, lacking insight into whether uncertainty originates from perception or decision-making flaws.
- 2) Obscure root cause of performance issues which hinders targeted improvements and leads to \uparrow queries and \downarrow performance.
- 3) Require human-labelling for calibration (not scalable).

Existing Works

Human

Place the bowl in the microwave, please.

Robot Which one, plastic or metal?

Human

The plastic one, please.

There is a microwave, a landfill bin, a recycling bin, and a compost bin.

Observations: I see a metal bowl and a plastic bowl on the counter.

Possible next steps: 0.44 - Put plastic bowl in microwave. 0.41 - Put metal bowl in microwave. 0.03 - Put metal bowl in landfill bin 0.08 - Put plastic bowl in recycling bin.

Prediction Set from Conformal Prediction

Conformal prediction threshold: 0.21 Steps with scores above threshold: 0.44 - Put plastic bowl in microwave. 0.41 - Put metal bowl in microwave.

Prediction size $2 > 1 \rightarrow ask$ for help. LLM Generates Question

Robots that ask for help: Uncertainty alignment for large language model planners, CoRL 2023

Environment Context

Robot Observations

LLM Next Step Prediction with Confidence

Trigger Human Help

Contributions

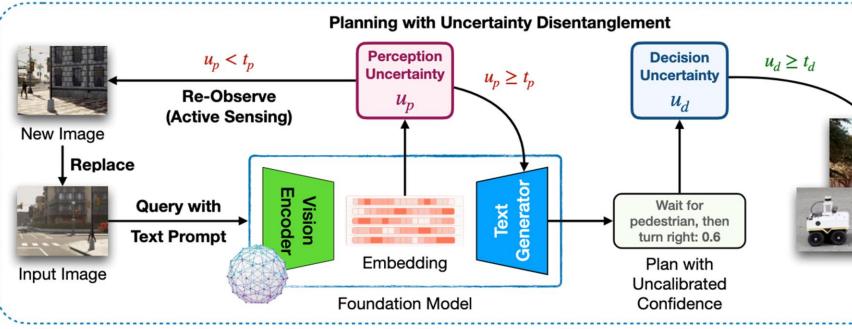
- We present a novel framework to **disentangle and quantify** the inherent source of uncertainty in multimodal foundation models into:
 - **Perception uncertainty** associated with the model's visual processing capabilities and
 - **Decision uncertainty** linked to its ability to generate actionable plans
- We quantify each source using **novel quantification methods** conformal prediction and Formal-Methods-Driven Prediction (FMDP), leveraging symbolic representations and formal verification techniques for theoretical guarantees
- > We implement a two-part improvement strategy via targeted interventions: active sensing and automated model refinement.
- Empirical validation in real-world and simulated robotic tasks demonstrate that our framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.

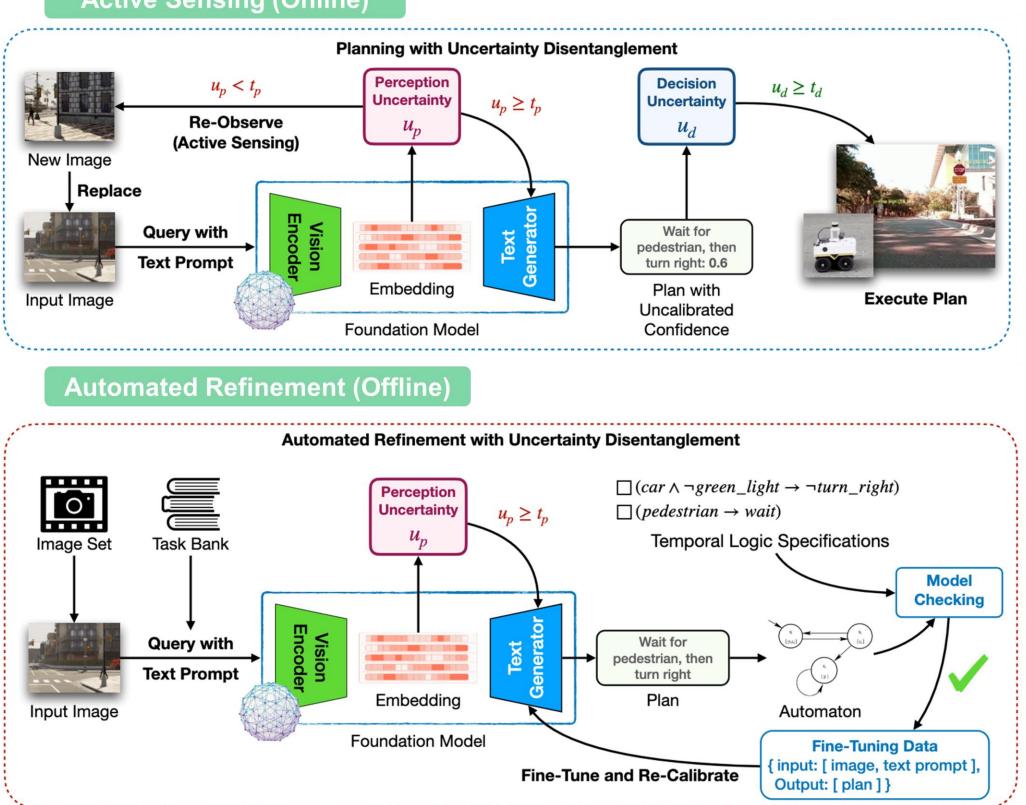
A Brief Outline

- Overview of the framework
- Perception and decision uncertainty
 - Quantifying perception uncertainty: conformal prediction
 - Decision uncertainty: formal-methods-driven prediction (FMDP)
- Targeted interventions to reduce uncertainty
 - Efficient online inference via active sensing
 - Automated fine-tuning with probabilistic guarantees
- Experimental results
- Takeaways

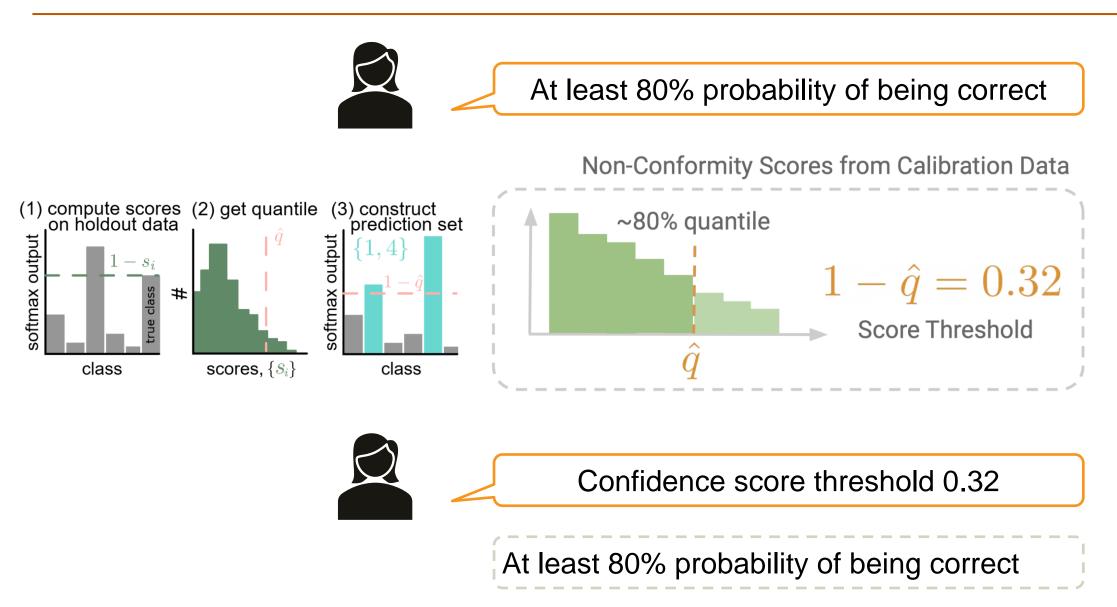
Overview of the Framework

Active Sensing (Online)



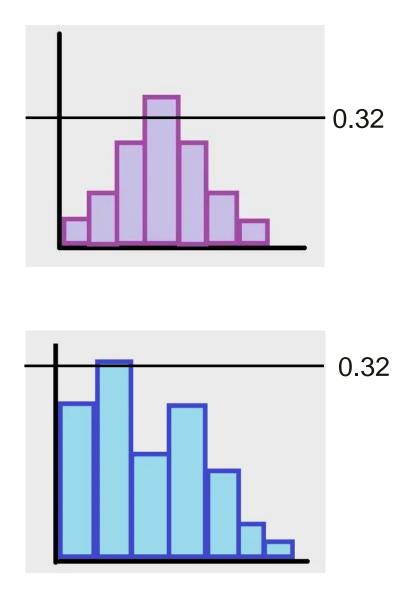


Perception Uncertainty



Perception Uncertainty Score

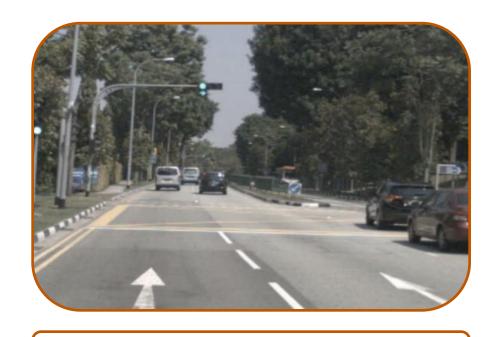
> A theoretical lower bound on the probability of correctly identifying objects in the image



Decision Uncertainty

Decision Uncertainty Score

- Given a set of specifications, expressed in temporal logic,
- > A decision uncertainty score of a plan is a theoretical lower bound probability of the plan satisfying the specifications

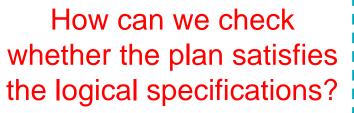


Go straight at the traffic light

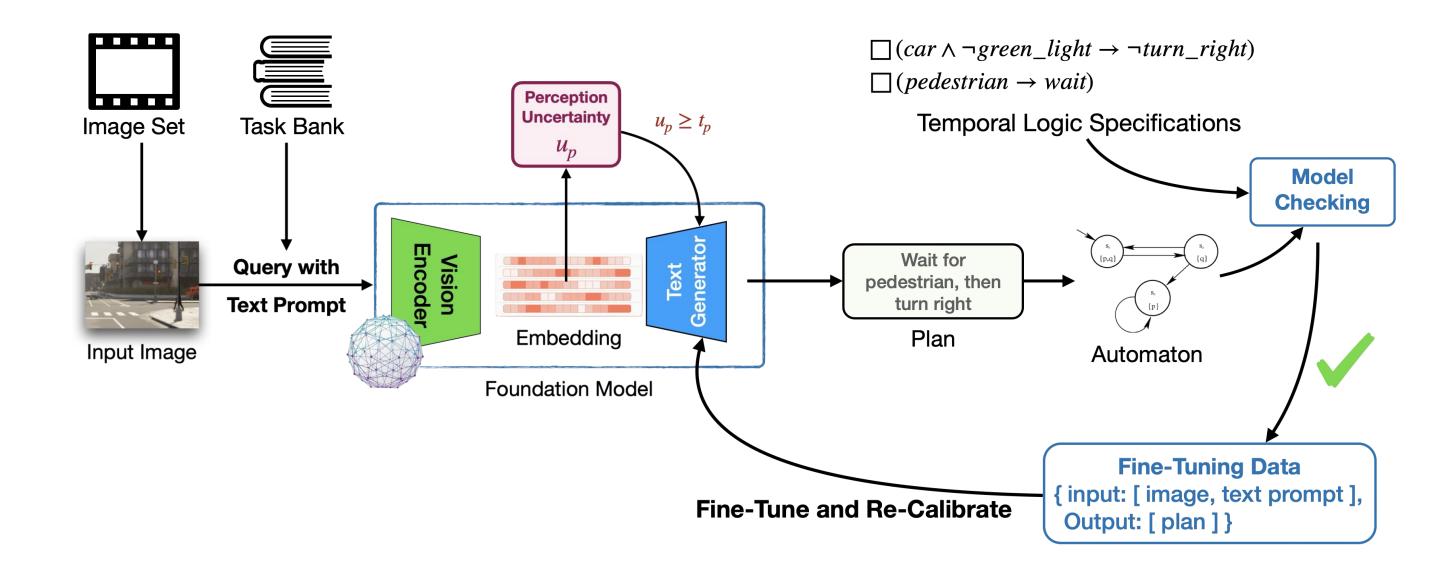
- 1. The traffic light is green and there are no pedestrians
- Move forward 2.

Specifications (in temporal logic): \Box (¬green traffic light \rightarrow ¬go straight), \Box (stop sign $\rightarrow \Diamond$ stop),

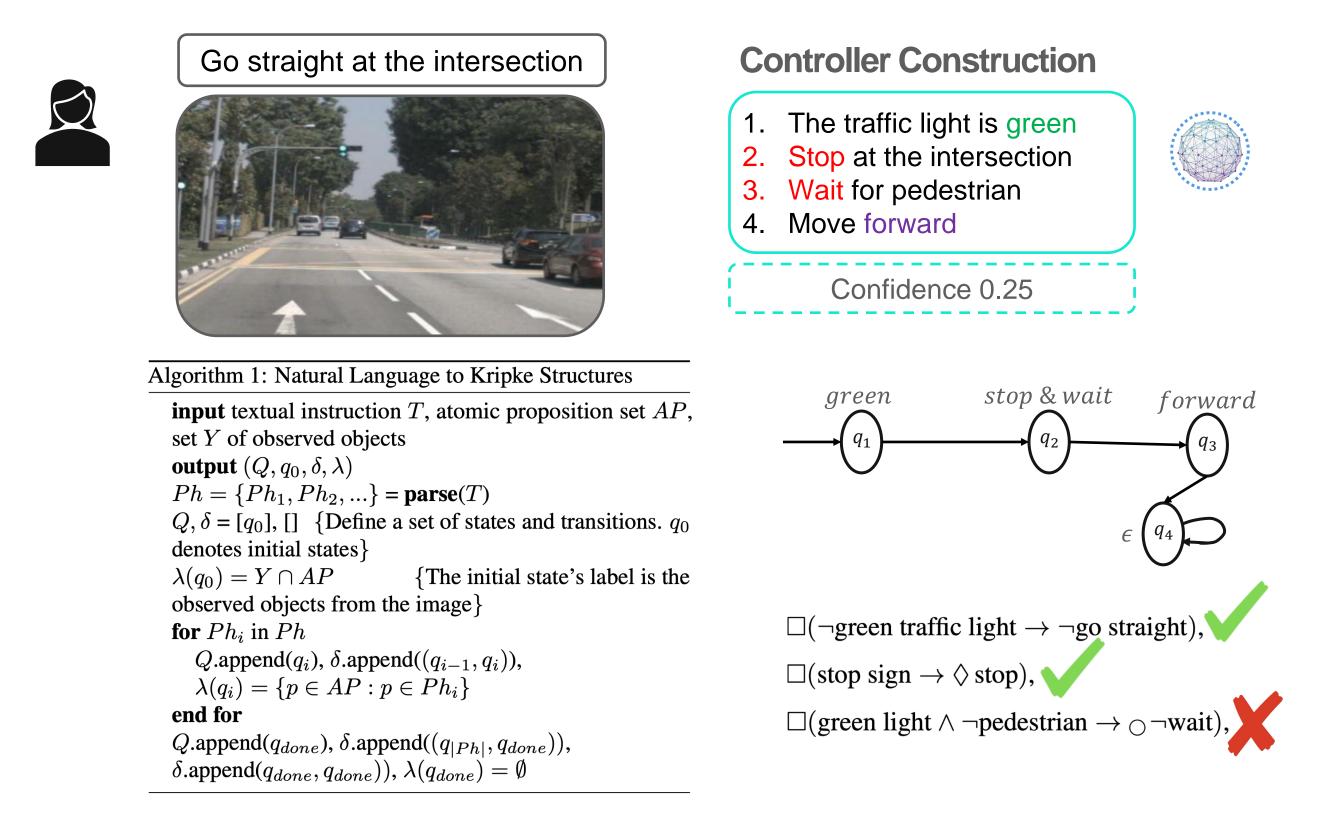
Decision Uncertainty Score = 0.7"at least 70% probability that the plan satisfies the specifications"



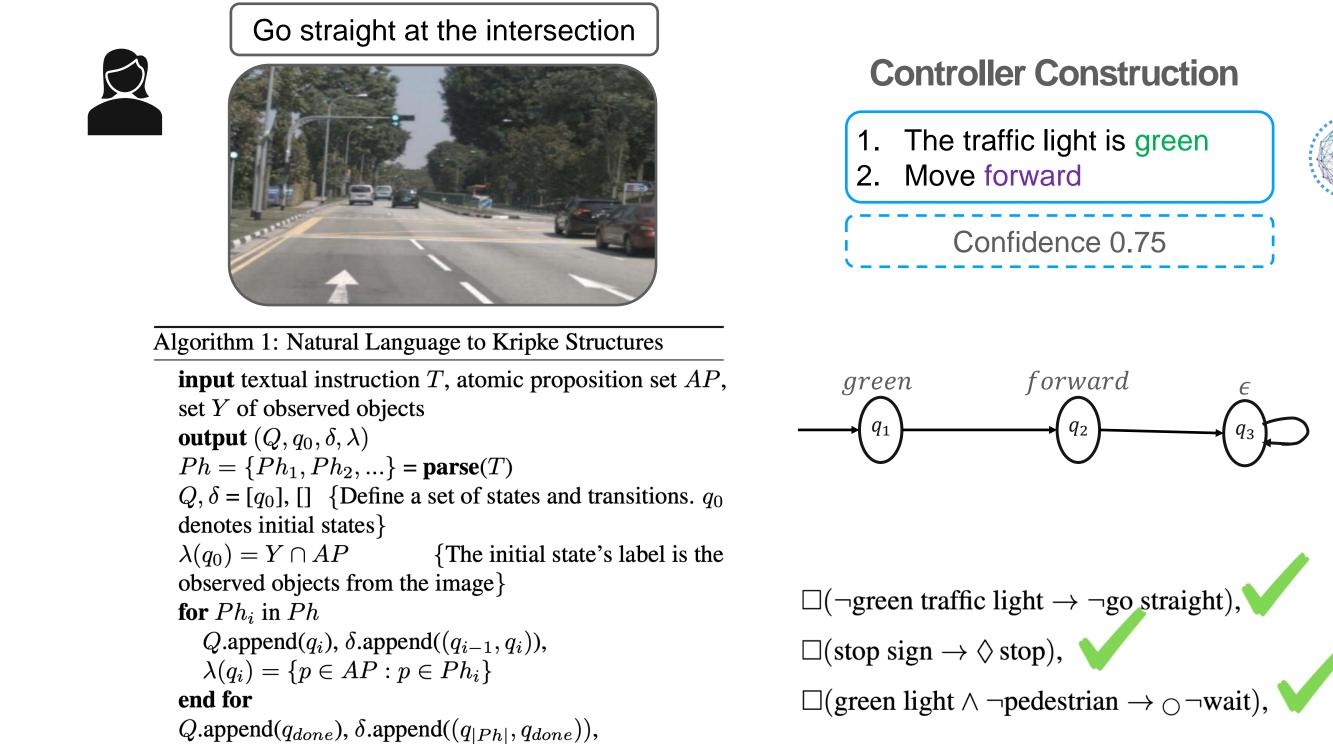
Automated Fine-tuning With Probabilistic Guarantees



Obtaining High-quality Fine-tuning Data Without HIL

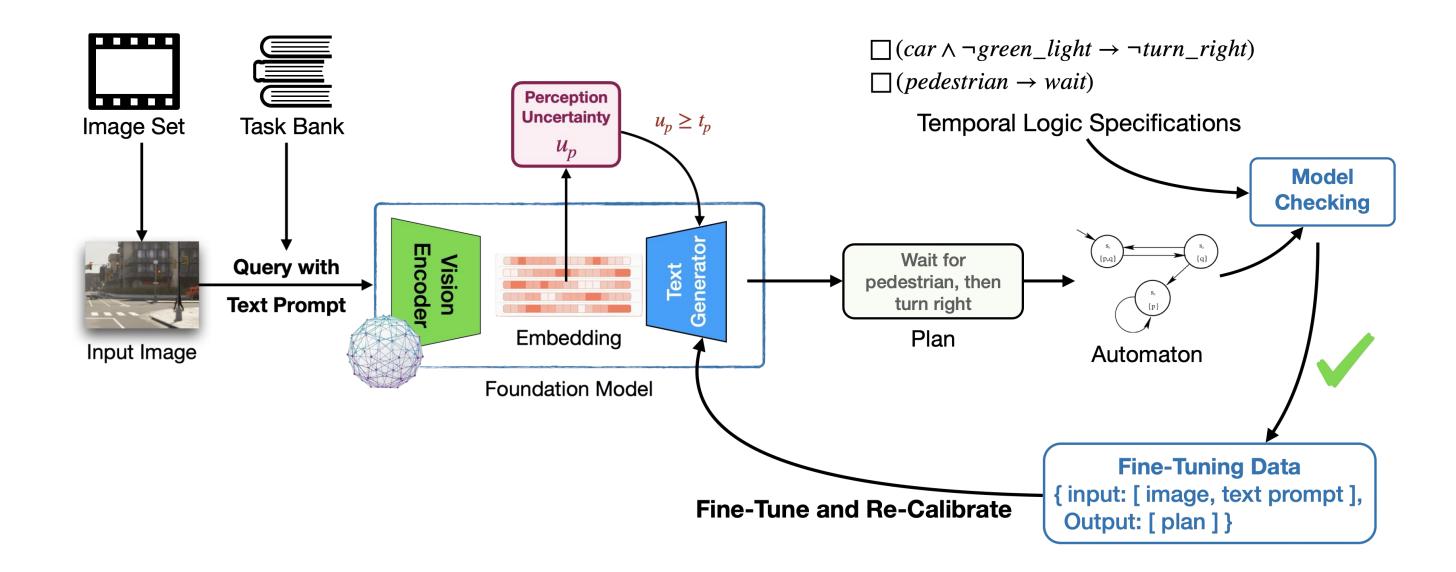


Obtaining High-quality Fine-tuning Data Without HIL

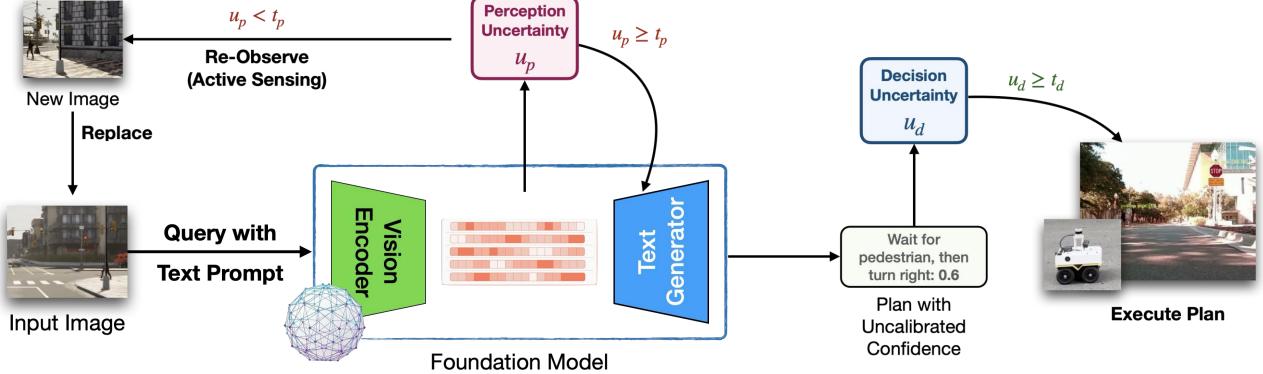


 δ .append $(q_{done}, q_{done})), \lambda(q_{done}) = \emptyset$

Automated Fine-tuning With Probabilistic Guarantees



Active Sensing at Inference



Qualitative Demonstrations

Task: Turn right at next intersection

Domain2: Table-top Manipulation

Place the block into the bowl

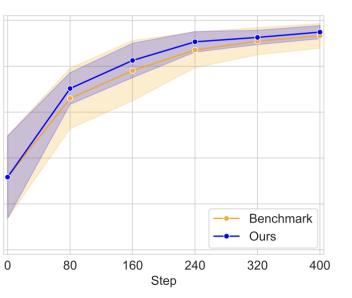
Benchmarking				
Planning Pipeline	Avg. Percp.	Avg. Dec.	Prob. of Satisfying	Prob. of Satisfying
	Unc. Score	Unc. Score	Spec. (Avg)	Spec. (SD)
Raw Model w/o AS	0.842	0.279		
Raw Model with AS	0.936	0.306		0.180
Fine-tuned Model (Benchmark) with AS	0.936	0.931	0.933	0.048
Fine-tuned Model (Ours) with AS	0.936	0.955	0.959	0.025

Key Contributions:

(1) Identification and disentanglement of the source of uncertainty in multimodal foundation models into:

• **Perception uncertainty** associated with the model's visual processing capabilities • **Decision uncertainty** linked to its ability to generate actionable plans

- (2) Uncertainty-guided targeted interventions: scalable model fine-tuning (offline) and active sensing (online)
- (3) Reduction of decision variability by up to 40% with a single re-query and up to 2x increase in number of specifications satisfied



Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework

Neel P. Bhatt*, Yunhao Yang*, Rohan Siva, Daniel Milan, Ufuk Topcu, Zhangyang Wang

Thank you!

CENTER FOR autonomy