SwiftVI: Time-Efficient Planning and Learning with MDPs

Kasper Overgaard Mortensen · Konstantinos Skitsas · Emil Morre Christensen · Mohammad Sadegh Talebi · Andreas Pavlogiannis · Davide Mottin · Panagiotis Karras

A project based upon Emil Morre Christensen's master's thesis

Planning

Planning

Planning

Planning with MDPs

Planning with MDPs

Planning with MDPs using Value Iteration

- S = State space
- A = Action space
- *P* = *Transition probability funtion*
- R = Reward function
- $\gamma = Future reward discount factor$

with number of actions

transition probabilities

A simple solution

Beneficial to avoid updating action values! But how?

An upper bound exists...

...such that value's updates are monotonic decreasing.

Update only the best action

Overhead: Build the heaps.

Per iteration of Value Iteration:

Worst case: Update all actions. Best case: One action update per state. Approaches the best case as Value function converge.

Learning with MDPs

Unknown reward function and transition probabilities.

Learning with MDPs

Learned through a balance of exploration and exploitation.

Learning with MDPs using Value Iteration

Substitute VI if it is used as a subroutine.

Contact me: km@cs.au.dk

Repository: github.com/constantinosskitsas/SwiftVI

Repository for Emil's master's thesis: github.com/Dugtoud/Time-Efficient-VI-for-MDPs