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Planning with MDPs
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Planning with MDPs
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Planning with MDPs using Value lteration

lterative adjustments of valuations

Initial value function V° e-optimal value function V*

Value lteration

MDP M = (S,A,P,R,y) e-optimal policy my

S = State space
A = Action space
P = Transition probability funtion
R = Reward function

y = Future reward discount factor



Scalability issues of Value lteration
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Per-state complexity scales And scales with non-zero
with number of actions transition probabilities



A simple solution

Beneficial to avoid updating action values!
But how?



An upper bound exists...

...such that value’s updates are monotonic decreasing.

For state s € S, Ve(s) < Vy(s) - Jpper bound

conveniently not
defined here.
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Update Onl.y the beSt aCtiOn Highest valued action
/ forstates € §

0
... untilone remains the

best. Value of action a

/ in state s

V(s) = max Q(s, a)
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Maintain action-values

In max heaps.
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Update only the best action

Overhead: Build the heaps.
Per iteration of Value lteration:

Worst case: Update all actions.
Best case: One action update per state.
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Approaches the best case
as Value function converge.
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Learning with MDPs

Unknown reward function and transition probabilities.




Learning with MDPs

Learned through a balance of exploration and exploitation.




Learning with MDPs using Value Iteration

Substitute VI if itis used as a subroutine.

Update
estimated MDP

Feed to Follow
Value the policy
I[teration

\

Find policy for estimated
MDP




Thank you

Contact me: km@cs.au.dk

Repository: github.com/constantinosskitsas/SwiftVI

Repository for Emil’s master’s thesis:
github.com/Dugtoud/Time-Efficient-VI-for-MDPs
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