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Scheduling Google Cloud VMs is a large-scale problem:  10-100 
scheduling request/s on 100s to 10,000+ hosts, O(100-10,000) VMs 
active per cluster. Our scheduler, Borg Prime, schedules VMs 1) when they 
arrive, 2) during host maintenance, and 3) to defragment the fleet.

VM Scheduling at Google
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● Maximize empty hosts to put empty hosts in a low 
power state, improve large VM obtainability, improve 
maintenance speed, use hosts elsewhere, etc.

● Minimize stranding to fill all resource dimensions on 
each host, maximizing useful CPU, memory, and SSD.

● Minimize VM disruptions  when defragmenting the 
fleet or performing maintenance operations.

VM Scheduling Objectives
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In 2020, we invented lifetime-based 
memory allocation for C++, where 
we allocated objects to huge pages 
based on ML-predicted lifetimes 
while correcting for mispredictions.

We observed that the same 
approach applies to cloud VMs.

Lifetime-Aware Scheduling
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88% of VMs are short-lived, but only 2% of core hours 
are consumed by short-lived VMs. Weighting all VMs the 
same in bin packing is fundamentally inefficient.

Key Insight
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High-Level Setup
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ML Model predicts the lifetime of a VM when it arrives 
and repredicts lifetimes of VMs on candidate hosts. 

High-Level Setup
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New cluster scheduling algorithms use these 
predictions to improve scheduling objectives.

High-Level Setup
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Lots of prior work on prediction-based scheduling:

● Many papers, going back 10+ years: Quasar, 
Paragon, Wrangler, 3Sigma, Jockey, TetriSched, etc.

● The closest work is Barbalho et al. from MLSys’23, 
introduced the Lifetime Alignment (LA) algorithm.

↪ Google’s environment is unique and our approach is 
thus quite different.

Related Work
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● Adaptation to mispredictions: Continually repredict 
VM and host lifetime based on new observations.

● New Algorithmic Approach: Sometimes place VMs 
with very different, not similar, lifetimes together.

● Lifetime-aware Maintenance & Defragmentation: 
Exploit lifetimes to reduce the number of migrations.

 

↪ We improve SOTA scheduling quality  

Our Key Novel Innovations
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Talk Outline
Algorithms & Approach
Lifetime-aware VM scheduling techniques1
Production Experience
Deploying lifetime-aware scheduling in Google Cloud2
Evaluation
Evaluating our approach in production and simulation3



PART I
Algorithms & Approach
VM lifetime models and lifetime-aware VM scheduling



Basic Algorithm 
(Non-Invasive) 
Existing scheduling algorithm, 
with lifetime as tie-breaker.



Baseline: LA (MLSys’23)
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Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

Actual lifetime

Baseline: LA (MLSys’23)
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Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

Actual lifetime

Baseline: LA (MLSys’23)
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✘ The long-lived VM is not scheduled on Host 2, which is predicted short-lived.



Key Idea
Revisit and correct previous 
mispredictions when more 
information is known.



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
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  0d     

The average lifetime of the VM is 
initially 0.2 days



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
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  0d 1d     

The average remaining lifetime 
after running for 1 day is 4 days



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
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  0d 1d      7d

The average remaining lifetime 
after running for 7 days is 10 days



When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
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When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
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When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
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Advanced Algorithm 
(Invasive)
A fundamental redesign of VM 
scheduling with lifetimes



Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
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Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
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Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
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Key Idea
Fill gaps between long-lived 
VMs with much shorter-lived 
VMs.
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LAVA: Inspired by LLAMA algorithm in C++ memory 
allocation, fill gaps between long VMs with short ones.

Algorithm 2: LAVA
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PART II
Production Experience
Deploying lifetime-aware scheduling in Google Cloud



Prediction is on the critical path for VM scheduling.

● Model: Gradient boosted trees, 
○ balances accuracy & performance
○ part of the scheduler binary, not on other servers. 

● Median latency is 9 us (780x reduction vs. MLSys’23).

Model Choice & Integration
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Model is bundled in system binary and updated ~monthly.

● Offline training with backtesting.
● Model is tested and rolled-out gradually.
● Monitoring and Alerting catch regressions.
● We use Pilots with causal analysis and A/B testing for 

verifying correctness and effectiveness.

Safety & Correctness
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PART III
Evaluation
Evaluating our approach in production and simulation



Using a validated, highly accurate simulator based on 
production code & traces over 2 weeks, we show that NILAS 
and LAVA outperform LA by 1.1pp and 1.5pp empty hosts 
and up to 5.3pp and 5.7pp, respectively (1% of our fleet is a 
large amount).

Simulations
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NILAS has been running in 
production for almost a year. 
With 2-10pp empty machine 
improvement, and up to 2-3% 
stranding reduction.

Resource consumption from our 
approach is negligible.

Production Deployment
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Ablation studies and other 
details in the paper.
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Conclusion
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We deployed our novel lifetime-aware 
scheduling techniques in Google’s 
production data centers  
● We show the benefits of correcting 

mispredictions, using distribution-based models.
● We introduce new algorithms that group long and 

short-lived VMs together.
● We significantly improve SOTA performance.

Summary
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Optimal Upper Bound 
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Model Accuracy & Reprediction
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Bin Packing Metrics
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Simulator Validation
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Impact of Model Accuracy
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Rollout Processes
Option 1: Roll out the model independently of the system.

✔ Allows updating model more often than the system.
✘ Might break verification assumptions.

Option 2: Roll out model with the system binary. (Ours)
✔ Can leverage existing rollout testing.
✘ Model might be stale when it reaches production.
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Prediction is on the critical path for VM scheduling.

● Model: Gradient boosted trees
linked into the scheduler binary,
not on other servers. 

● Median latency is 9 us (780x reduction vs. MLSys’23).

Model Choice & Integration
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Explainability/Interpretability
● Model the problem in a way that it becomes naturally 

interpretable (e.g., predictor+algorithm recipe).
● Use explainable model libraries (e.g., decision trees).
● Use interpretability techniques (e.g., TCAV).
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Feature importance for LAVA 
models, calculated by the 
gradient boosted tree library.



VM Live Migration
Reduce VM migrations for de- 
fragmentation & maintenance.

51



Key Idea
Migrate VMs in the order of 
their lifetime, starting from the 
longest-lived.
Details in the paper.
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