Google

LAVA: Lifetime-Aware VM
Allocation with Learned
Distributions and Adaptation
to Mispredictions

Speakers: Yunchuan Kong & Kathryn S McKinley

MLSys 2025 - Last Session (Thursday May 15 4:30)

Jianheng Ling, Pratik Worah, Yawen Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason Behmer, Logan A. Bush,
Prakash Ramanan, Rajesh Kumar, Thomas Chestna, Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

VM Scheduling at Google

Scheduling is a large-scale problem: 10-100
scheduling request/s on 100s to 10,000+ hosts, O(100-10,000) VMs
active per cluster. Our scheduler, Borg Prime, schedules VMs 1) when they

, 2) during ,and 3) to the fleet.
Empty host
' & VM #1
:> ggl(::eduler Scoring |
VM (Borg Prime)

-

Host Host Host Google

VM Scheduling Objectives

e Maximize to put empty hosts in a low
power state, improve large VM obtainability, improve
maintenance speed, use hosts elsewhere, etc.

e Minimize to fill all resource dimensions on
each host, maximizing useful CPU, memory, and SSD.

e Minimize when defragmenting the
fleet or performing maintenance operations.

Lifetime-Aware Scheduling

Learning-based Memory Allocation
for C++ Server Workloads

Martin Maas, David G. Andersen*’, Michael Isard, Mohammad Mahdi Javanmard**,
Kathryn S. McKinley, Colin Raffel

Google Research Carnegie Mellon University ~ *Stony Brook University

In 2020, we invented

, where
we allocated objects to huge pages
based on ML-predicted lifetimes
while correcting for mispredictions.

We observed that

Abstract
Modern C++ servers have memory footprints that vary widely
over time, causing persistent heap fragmentation of up to 2x
from long-lived objects allocated during peak memory usage.
‘This fragmentation is exacerbated by the use of huge (2MB)
pages, a requirement for high performance on large heap
sizes. Reducing fragmentation automatically is challenging
because C:++ memory managers cannot move objects

This paper presents a new approach to huge page frag-
mentation. It combines modern machine learning techniques
with a novel memory manager (LLama) that manages the
heap based on object lifetimes and huge pages (divided into
blocks and lines). A neural network-based language model
predicts lifetime classes using symbolized calling contexts.

ACM Reference Format:
Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, Colin Raffel. 2020. Learning-based

temory Allocation for C++ Server Workloads. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS '20),
March 16-20, 2020, Lausanne, Switzerland. ACM, New York, NY,
USA., 16 pages. https://doi.org/10.1145/3373376.3378525

1 Introduction

Optimizing interactive web services, many of which are writ-
ten in C++, requires meeting strict latency requirements
while minimizing resource usage. Users abandon services if
response times are too slow and data center costs are directly
to resource usage. Multithreaded services re-

The model learns per-all site life-
times from previous runs, generalizes over different binary
versions, and extrapolates from samples to unobserved call-
ing contexts. Instead of size classes, LLaMA’s heap is orga-
nized by lifetime classes that are dynamically adjusted based
on observed behavior at a block granularity.

LiAMA reduces memory fragmentation by up to 787% while
only using huge pages on several production servers. We ad-
dress ML-sp tolerating i
and amortizing expensive predictions across application ex-
ecution. Although our results focus on memory allocation,
the questions we identify apply to other system-level prob-
lems with strict latency and resource requirements where
machine learning could be applied

CCS Concepts - Computing methodologies — Super-
vised learning; + Software and its engineering — Allo-
cation / deallocation strategies;

Keywords Memory management, Machine Learning, Life-
time Prediction, Profile-guided Optimization, LSTMs

* Work done while at Google.

Permission to make digital or hard copies of part or all of this work for

quire large heaps both to minimize the number of deployed
instances and to handle multiple requests simultancously.
Hardware has not kept pace with these demands. While
memory sizes have increased, Translation Lookaside Buffers
(TLB) have not, because address translation s on the crit-
ical path. One solution is increasing TLB reach with huge
(2MB) pages, i, each entry covers more memory. Huge
pages reduce TLB misses, improving performance by up to
537% [33, 37). Looking forward, 1 GB pages are already avail-
able and variable-sized ranges can eliminate even more TLB
‘misses [27, 33]. Future virtual memory systems may hence
predominantly rely on huge pages and ranges.

These trends require workloads to efficiently use huge
‘pages. While Operating Systems (OS) have explored trans-
parent huge pages [37, 45), they either trade performance for
space, increasing the physical memory footprint by up to 23%
and 697% on server workloads [37], or break up huge pages,
sacrificing performance (TLB hits) and depleting contiguous
physical memory for all workloads on the machine (37, 45].
If the C++ memory allocator is not huge page aware, it may
further defeat the OS. Only one C++ memory allocator in
the literature uses huge pages, but its evaluation uses mi-
[36]. To our knowledge, no current memory

personal or classroom use is e
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS '20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s).

ACM ISBN 078-1-4503-7102-5/20/03,
hitps:/doi.org/10.1145/3373376.3378525

allocator efficiently manages memory entirely with huge
‘pages without incurring significant fragmentation.

We identify a root cause of huge page fragmentation in
long-running servers: allocations of long-lived objects at
peak memory usage. Since C++ allocators cannot move ob-
jects, using huge pages increase the probability of one long-
lived object preventing a page from being released to the

Google

Key Insight

are short-lived, but only
are consumed by short-lived VMs. Weighting all VMs the
same in bin packing is

% VMs by Lifetime % Core Hours by VM Lifetime
‘ @® (0, 10min)
18% @ [10min, 1hr)
[1hr, 6hr)
@ [6hr, 24hr)
@ [24hr, 7d)
38% ® [7d, 30d)
@® [30d, Inf)

Google

High-Level Setup

Empty host
VM #1
) Pool
Scheduler Lifetime-Aware |
VM (Borg Prime) VM Allocation
Request . .
Host Host Host

Google

High-Level Setup

predicts the lifetime of a VM when it arrives
and repredicts lifetimes of VMs on candidate hosts.

VM Lifetime ﬁ%

Predictions

Empty host
VM #1
) Pool
Scheduler Lifetime-Aware
VM (Borg Prime) VM Allocation
Request E
Host Host Host

Google

High-Level Setup

New use these
predictions to improve scheduling objectives.

VM Lifetime 8@@@

=
A “‘7‘-—;93—_%}
Predictions °\§55 Emoty host
\ VM #1
) Pool
Scheduler Lifetime-Aware |
VM (Borg Prime) VM Allocation

Request
Host Host Host

Google

Related Work

Lots of prior work on prediction-based scheduling:

o : Quasar,
Paragon, Wrangler, 3Sigma, Jockey, TetriSched, etc.

e The closest work is Barbalho et al. from MLSys'23,
introduced the

= and our approach is
thus quite different.

Our Key Novel Innovations

° : Continually repredict
VM and host lifetime based on new observations.

o : Sometimes place VMs
with very different, not similar, lifetimes together.

Exploit lifetimes to reduce the number of migrations.

= We improve SOTA scheduling quality

Talk Outline
'I Algorithms & Approach

2 Production Experience
3 Evaluation

oooooo

PART |
Algorithms & Approach

VM lifetime models and lifetime-aware VM scheduling

Basic Algorithm

(Non-Invasive)

Existing scheduling algorithm,
with lifetime as tie-breaker.

Baseline: LA (MLSys’23)

Predict a lifetime once when the VM arrives and place it
on the host with the closest exit time based on its VMs.

Host 1

Host 2

Host 3

Time

14

Baseline: LA (MLSys’23)

Predict a lifetime once when the VM arrives and place it
on the host with the closest exit time based on its VMs.

Host 1

Host 2

Host 3

Time

15

Baseline: LA (MLSys’23)

Predict a lifetime once when the VM arrives and place it
on the host with the closest exit time based on its VMs.

Host 1

Host 2

Host 3

Time

16

Baseline: LA (MLSys’23)

Predict a lifetime once when the VM arrives and place it
on the host with the closest exit time based on its VMs.

Host 1

Predicted long

Host 2

Host 3

Time

17

Baseline: LA (MLSys’23)

Predict a lifetime once when the VM arrives and place it
on the host with the closest exit time based on its VMs.

Predicted long

Host 1

Host 2

Host 3

Predicted long |
X The long-lived VM is not scheduled on Host 2, which is predicted short-lived.

Time
Google

Key Ildea
Revisit and correct previous
mispredictions when more
information is known.

Distribution-Based Predictions

Instead of predicting the lifetime once, predict updated
conditional lifetimes based on running for X days.

od
1
]
I\
| The average lifetime of the VM is
initially 0.2 days
g
2
[%2]
]
(a)
0 10 20 30 40 50

VM Lifetime (days) Google

Distribution-Based Predictions

Instead of predicting the lifetime once, predict updated
conditional lifetimes based on running for X days.

Density (log)

0d 1d

.

S

10

The average remaining lifetime
after running for 1 day is 4 days

20 30 40 50

VM Lifetime (days) Google

Distribution-Based Predictions

Instead of predicting the lifetime once, predict updated
conditional lifetimes based on running for X days.

Density (log)

0d 1d

\

7d

r ._»I

1
1
\.\ The average remaining lifetime

i | after running for 7 days is 10 days

10 20 30 40 50

VM Lifetime (days) Goo

Algorithm 1: NILAS

When scoring a host, repredict all the lifetimes of the VMs
on the host based on the uptime so far.

Host 1

Predicted long

Host 2

Host 3

Time

23

24

Algorithm 1: NILAS

When scoring a host, repredict all the lifetimes of the VMs
on the host based on the uptime so far.

Host 1

Host 2

Host 3

Time
Google

25

Algorithm 1: NILAS

When scoring a host, repredict all the lifetimes of the VMs
on the host based on the uptime so far.

Host 1

Predicted long

Host 2

v’ Now the new VM gets scheduled on Host 2, saving one empty host.

Host 3

Time
Google

Advanced Algorithm

(Invasive)
A fundamental redesign of VM
scheduling with lifetimes

Algorithm 2: LAVA

Problem: Mispredictions push out the exit time.

Host 3 Host 2 Host 1

Time

Algorithm 2: LAVA

Problem: Mispredictions push out the exit time.

Expected exit time

Host 3 Host 2 Host 1

Time

29

Algorithm 2: LAVA

Problem: Mispredictions push out the exit time.

Expected exit time

Predicted long

Host 3 Host 2 Host 1

Time

Key Idea
Fill gaps between long-lived
VMs with much shorter-lived

VMs.

oooooo

Algorithm 2: LAVA

LAVA: Inspired by LLAMA algorithm in C++ memory
allocation, fill gaps between long VMs with short ones.

- || ong

I

2 [Predicted

I [Predicted short | [Predicted short | [Predicted short | [

™ . .

- Even mispredicted VMs no longer
3 push out the deadline.
I

™

wd

o

o

I

Time

31

Google

PART li

Production Experience
Deploying lifetime-aware scheduling in Google Cloud

Model Choice & Integration

Prediction is on the critical path for VM scheduling.

e Model: Gradient boosted trees,
o balances accuracy & performance
o part of the scheduler binary, not on other servers.

e Median latency is 9 us (780x reduction vs. MLSys’23).

33

34

Safety & Correctness

Model is bundled in system binary and updated ~monthly.

e Offline training with backtesting.
e Modelis tested and rolled-out gradually.
e Monitoring and Alerting catch regressions.

e We use Pilots with causal analysis and A/B testing for
verifying correctness and effectiveness.

PART Il

Evaluation
Evaluating our approach in production and simulation

36

Simulations

Using a validated, highly accurate simulator based on

production code & traces over 2 weeks, we show that NILAS
and LAVA outperform LA by 1.1pp and 1.5pp empty hosts
and up to 5.3pp and 5.7pp, respectively (1% of our fleet is a
large amount). s s e e e ey s

(=]

N
o
L

Z
|/ / %

Increase in
=
o

Empty Host % Empty Host %
o

4
Pool-1 Pool-2 Pool-3 Pool-4 Pool-5 Pool-6 Pool-7 Pool-8 Pool-9 Pool-10 Pool-11 Pool-12

N
o
s

=
o
s

Increase in

% [/

o
I

Pool-13 Pool-14 Pool-15 Pool-16 Pool-17 Pool-18 Pool-19 Pool-20 Pool-21 Pool-22 Pool-23 Pool-24

Google

Production Deployment

NILAS has been running in
production for almost a year.
With 2-10pp empty machine
improvement, and up to 2-3%
stranding reduction.

Resource consumption from our
approach is negligible.

37

(a) Empty hosts.

(b) CPU stranding.

Google

Ablation studies and other
details in the paper.

38

oooooo

Conclusion

Summary

We deployed our novel lifetime-aware
scheduling techniques in Google’s
production data centers

e We show the benefits of correcting
mispredictions, using distribution-based models.

e We introduce new algorithms that group long and
short-lived VMs together.

e We significantly improve SOTA performance.

Thank you! Any questions?

Jianheng Ling, Pratik Worah, Yawen Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar
Gupta, Jason Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, Yajing
Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

Backup Slides

Optimal Upper Bound

Optimal B NILAS (Oracle)
NILAS (Oracle)-ideal EEm NILAS
NILAS-ideal EEE NILAS (no uptime)

3 2 20

[™

g S 15 |

£3

(TR 10

o

@ £

g 5

=

0

43

Google

44

Model Accuracy & Reprediction

] [0 Including re-predictions
1053 I Without re-predictions

Frequency (log)

Logl10 Error

Google

Bin Packing Metrics

% Improvement in

Packing Density

% LABinary A NILAS @ LAVA

30 ® [©
20 : ® [
10 - 10
0% -0
1 | 1 | 1
0 5 10 15 20

% Improvement in Empty Host %

% Improvement in

Empty-to-Free

45

Google

Simulator Validation

100

80 -

60 -

40

20 A

CPU Utilization

—— Simulation Output
—— Ground Truth

46

Google

47

Impact of Model Accuracy

20 A

13 7 e

10

Increase in
Empty Host %

—— LA-Binary ——— NILAS —— LAVA

0 T T T T T T
0 20 40 60 80 100

Accuracy (%)

Google

48

Rollout Processes

Option 1: Roll out the model independently of the system.
v/ Allows updating model more often than the system.

X Might break verification assumptions.
Option 2: Roll out model with the system binary. (Ours)

v/ Can leverage existing rollout testing.

X Model might be stale when it reaches production.

Google

49

Model Choice & Integration

Prediction is on the critical path for VM scheduling.

e Model: Gradient boosted trees
linked into the scheduler binary,
not on other servers.

e Median latency is 9 us (780x reduction vs. MLSys’23).

50

Explainability/Interpretability

e Model the problem in a way that it becomes naturally
interpretable (e.g., predictor+algorithm recipe).

e Use explainable model libraries (e.g., decision trees).

e Use interpretability techniques (e.g., TCAV).

o Feature importance for LAVA
oy models, calculated by the
Hita Mo gradient boosted tree library.

Google

VM Live Migration
Reduce VM migrations for de-
fragmentation & maintenance.

oooooo

Key Idea

Migrate VMs in the order of
thelir lifetime, starting from the
longest-lived.

Details in the paper.

oooooo

