
LAVA: Lifetime-Aware VM 
Allocation with Learned 
Distributions and Adaptation
to Mispredictions
Speakers: Yunchuan Kong & Kathryn S McKinley
MLSys 2025 – Last Session (Thursday May 15 4:30)

Jianheng Ling, Pratik Worah, Yawen Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason Behmer, Logan A. Bush, 
Prakash Ramanan, Rajesh Kumar, Thomas Chestna, Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



Scheduling Google Cloud VMs is a large-scale problem:  10-100 
scheduling request/s on 100s to 10,000+ hosts, O(100-10,000) VMs 
active per cluster. Our scheduler, Borg Prime, schedules VMs 1) when they 
arrive, 2) during host maintenance, and 3) to defragment the fleet.

VM Scheduling at Google
2

Host

VM #1VM #2

VM #3

VM #4

Empty host

Host Host

Scoring
Pool 
Scheduler
(Borg Prime)VM

Request



● Maximize empty hosts to put empty hosts in a low 
power state, improve large VM obtainability, improve 
maintenance speed, use hosts elsewhere, etc.

● Minimize stranding to fill all resource dimensions on 
each host, maximizing useful CPU, memory, and SSD.

● Minimize VM disruptions  when defragmenting the 
fleet or performing maintenance operations.

VM Scheduling Objectives
3



In 2020, we invented lifetime-based 
memory allocation for C++, where 
we allocated objects to huge pages 
based on ML-predicted lifetimes 
while correcting for mispredictions.

We observed that the same 
approach applies to cloud VMs.

Lifetime-Aware Scheduling
4



88% of VMs are short-lived, but only 2% of core hours 
are consumed by short-lived VMs. Weighting all VMs the 
same in bin packing is fundamentally inefficient.

Key Insight
5



High-Level Setup
6

Host

VM #1VM #2

VM #3

VM #1

Empty host

Pool 
Scheduler
(Borg Prime)

Host Host

VM
Request

Lifetime-Aware
VM Allocation



ML Model predicts the lifetime of a VM when it arrives 
and repredicts lifetimes of VMs on candidate hosts. 

High-Level Setup
7

Host

VM #1VM #2

VM #3

VM #4

Empty host

Pool 
Scheduler
(Borg Prime)

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation



New cluster scheduling algorithms use these 
predictions to improve scheduling objectives.

High-Level Setup
8

Host

VM #1VM #2

VM #3

VM #4

Empty host

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

Pool 
Scheduler
(Borg Prime)



Lots of prior work on prediction-based scheduling:

● Many papers, going back 10+ years: Quasar, 
Paragon, Wrangler, 3Sigma, Jockey, TetriSched, etc.

● The closest work is Barbalho et al. from MLSys’23, 
introduced the Lifetime Alignment (LA) algorithm.

↪ Google’s environment is unique and our approach is 
thus quite different.

Related Work
9



● Adaptation to mispredictions: Continually repredict 
VM and host lifetime based on new observations.

● New Algorithmic Approach: Sometimes place VMs 
with very different, not similar, lifetimes together.

● Lifetime-aware Maintenance & Defragmentation: 
Exploit lifetimes to reduce the number of migrations.

 

↪ We improve SOTA scheduling quality  

Our Key Novel Innovations
10



Talk Outline
Algorithms & Approach
Lifetime-aware VM scheduling techniques1
Production Experience
Deploying lifetime-aware scheduling in Google Cloud2
Evaluation
Evaluating our approach in production and simulation3



PART I
Algorithms & Approach
VM lifetime models and lifetime-aware VM scheduling



Basic Algorithm 
(Non-Invasive) 
Existing scheduling algorithm, 
with lifetime as tie-breaker.



Baseline: LA (MLSys’23)
14

Time

Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

H
os

t 1
H

os
t 2

H
os

t 3

Predicted long

Predicted long

Predicted short



Baseline: LA (MLSys’23)
15

Time

Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short



Baseline: LA (MLSys’23)
16

Time

Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long



Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

Actual lifetime

Baseline: LA (MLSys’23)
17

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long



Predict a lifetime once when the VM arrives and place it 
on the host with the closest exit time based on its VMs.

Actual lifetime

Baseline: LA (MLSys’23)
18

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long

Predicted long

✘ The long-lived VM is not scheduled on Host 2, which is predicted short-lived.



Key Idea
Revisit and correct previous 
mispredictions when more 
information is known.



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
20

  0d     

The average lifetime of the VM is 
initially 0.2 days



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
21

  0d 1d     

The average remaining lifetime 
after running for 1 day is 4 days



Instead of predicting the lifetime once, predict updated 
conditional lifetimes based on running for X days.

Distribution-Based Predictions
22

  0d 1d      7d

The average remaining lifetime 
after running for 7 days is 10 days



When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
23

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long



When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
24

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long

Repredicted lifetime

Repredicted lifetime

Repredicted lifetime



When scoring a host, repredict all the lifetimes of the VMs 
on the host based on the uptime so far.

Actual lifetime

Algorithm 1: NILAS
25

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted short

Predicted long

Predicted long

Predicted short

Predicted long

Predicted long

✔ Now the new VM gets scheduled on Host 2, saving one empty host.

Repredicted lifetime

Repredicted lifetime

Repredicted lifetime



Advanced Algorithm 
(Invasive)
A fundamental redesign of VM 
scheduling with lifetimes



Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
27

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted long



Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
28

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted long

Predicted long

Expected exit time



Problem: Mispredictions push out the exit time.

Algorithm 2: LAVA
29

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted long

Predicted long

Expected exit time

Repredicted lifetime

Predicted long



Key Idea
Fill gaps between long-lived 
VMs with much shorter-lived 
VMs.

30



LAVA: Inspired by LLAMA algorithm in C++ memory 
allocation, fill gaps between long VMs with short ones.

Algorithm 2: LAVA
31

Time

H
os

t 1
H

os
t 2

H
os

t 3

Predicted long

Predicted long

Predicted short Mispredicted shortPredicted shortPredicted short

Even mispredicted VMs no longer 
push out the deadline.



PART II
Production Experience
Deploying lifetime-aware scheduling in Google Cloud



Prediction is on the critical path for VM scheduling.

● Model: Gradient boosted trees, 
○ balances accuracy & performance
○ part of the scheduler binary, not on other servers. 

● Median latency is 9 us (780x reduction vs. MLSys’23).

Model Choice & Integration
33



Model is bundled in system binary and updated ~monthly.

● Offline training with backtesting.
● Model is tested and rolled-out gradually.
● Monitoring and Alerting catch regressions.
● We use Pilots with causal analysis and A/B testing for 

verifying correctness and effectiveness.

Safety & Correctness
34



PART III
Evaluation
Evaluating our approach in production and simulation



Using a validated, highly accurate simulator based on 
production code & traces over 2 weeks, we show that NILAS 
and LAVA outperform LA by 1.1pp and 1.5pp empty hosts 
and up to 5.3pp and 5.7pp, respectively (1% of our fleet is a 
large amount).

Simulations
36



NILAS has been running in 
production for almost a year. 
With 2-10pp empty machine 
improvement, and up to 2-3% 
stranding reduction.

Resource consumption from our 
approach is negligible.

Production Deployment
37



Ablation studies and other 
details in the paper.

38



Conclusion

39



We deployed our novel lifetime-aware 
scheduling techniques in Google’s 
production data centers  
● We show the benefits of correcting 

mispredictions, using distribution-based models.
● We introduce new algorithms that group long and 

short-lived VMs together.
● We significantly improve SOTA performance.

Summary



Thank you! Any questions?
Jianheng Ling, Pratik Worah, Yawen Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar 
Gupta, Jason Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, Yajing 
Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



Backup Slides



Optimal Upper Bound 
43



Model Accuracy & Reprediction
44



Bin Packing Metrics
45



Simulator Validation
46



Impact of Model Accuracy
47



Rollout Processes
Option 1: Roll out the model independently of the system.

✔ Allows updating model more often than the system.
✘ Might break verification assumptions.

Option 2: Roll out model with the system binary. (Ours)
✔ Can leverage existing rollout testing.
✘ Model might be stale when it reaches production.

48



Prediction is on the critical path for VM scheduling.

● Model: Gradient boosted trees
linked into the scheduler binary,
not on other servers. 

● Median latency is 9 us (780x reduction vs. MLSys’23).

Model Choice & Integration
49



Explainability/Interpretability
● Model the problem in a way that it becomes naturally 

interpretable (e.g., predictor+algorithm recipe).
● Use explainable model libraries (e.g., decision trees).
● Use interpretability techniques (e.g., TCAV).

50

Feature importance for LAVA 
models, calculated by the 
gradient boosted tree library.



VM Live Migration
Reduce VM migrations for de- 
fragmentation & maintenance.

51



Key Idea
Migrate VMs in the order of 
their lifetime, starting from the 
longest-lived.
Details in the paper.

52


