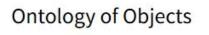


SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

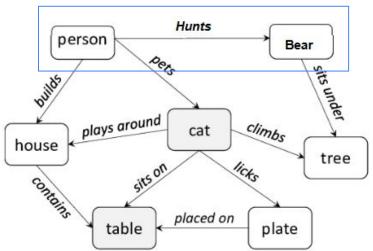
Md Saidul Hoque Anik, Ariful Azad

MLSys 2025 (Poster #7)

Outline


- 1. Background
- 2. Training KG Embeddings
- 3. Sparse Formulation of TransE
 - a. Benefits of Sparse Formulation
 - b. Extension to other models
- 4. SparseTransX Framework
- 5. Experiments and Results
 - a. Speedups and Memory Optimization
 - b. Accuracy

Knowledge Graph

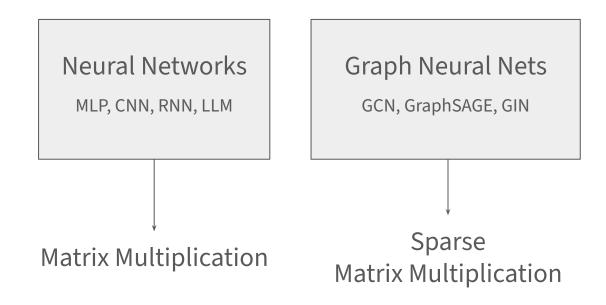

- A specialized graph structure to express ontology
- Directed graph with nodes as entities and edge as relations
- Stored as list of triplets

Head	Rel	Tail
Human	hunts	Bear
Bear	isA	Animal
Human	pets	Cat

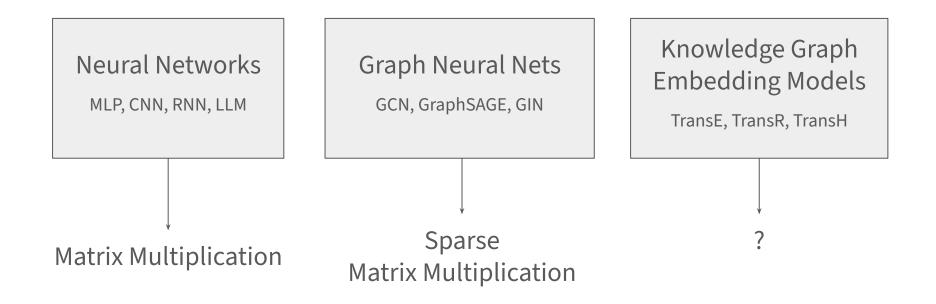
- Becoming increasingly popular due to the rise of large language models (LLMs) and usage in GraphRAG for context

A Fact

Knowledge Graphs

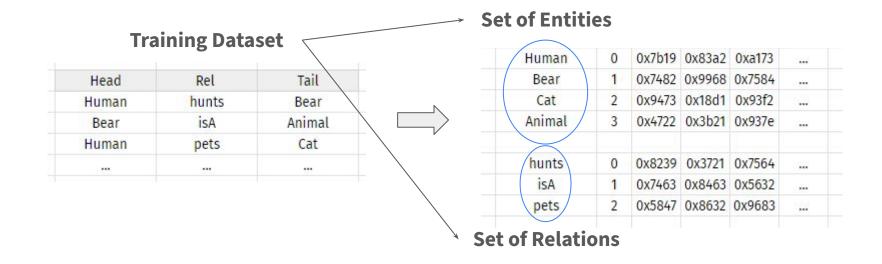

Motivation

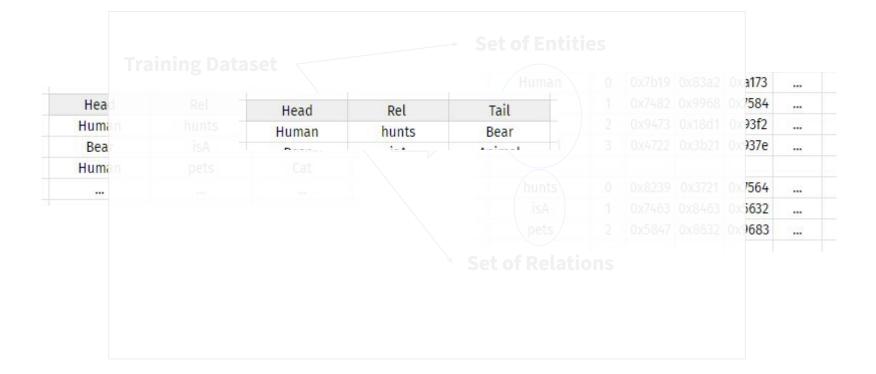
Neural Networks

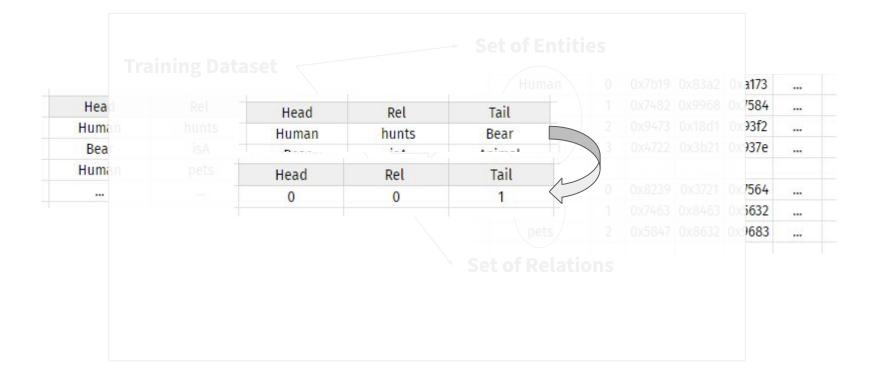

MLP, CNN, RNN, LLM

Matrix Multiplication

Motivation

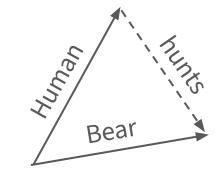



Motivation

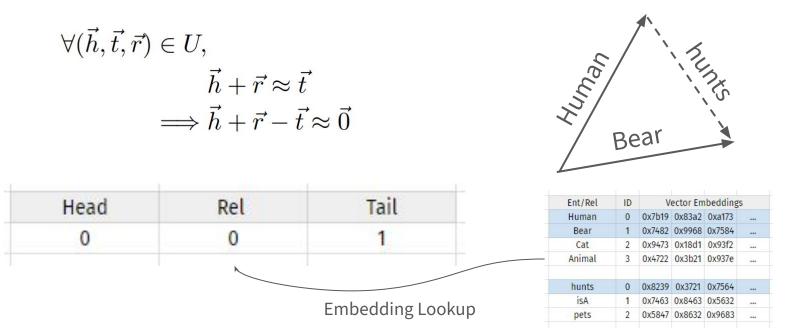


Training Dataset

Head	Rel	Tail
Human	hunts	Bear
Bear	isA	Animal
Human	pets	Cat

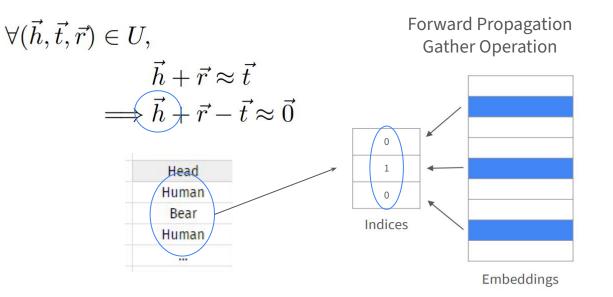


KG Embedding Training (TransE) Bordes et al., 2013


TransE score function:

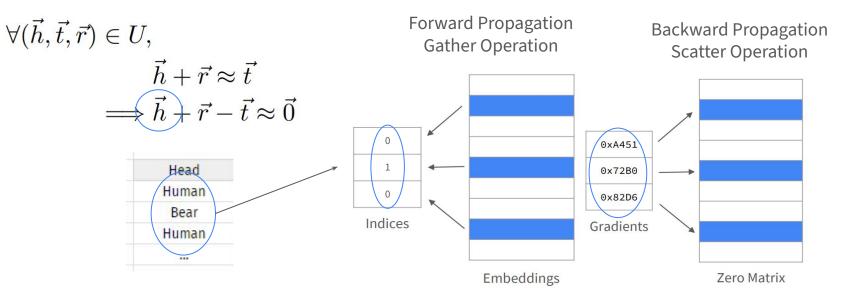
$$\forall (\vec{h}, \vec{t}, \vec{r}) \in U, \\ \vec{h} + \vec{r} \approx \vec{t} \\ \Longrightarrow \vec{h} + \vec{r} - \vec{t} \approx \vec{0}$$

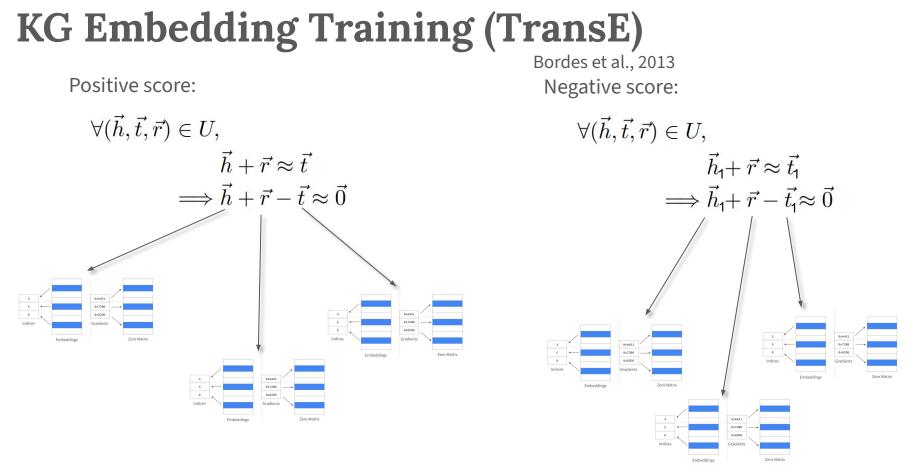
KG Embedding Training (TransE) Bordes et al., 2013


TransE score function:

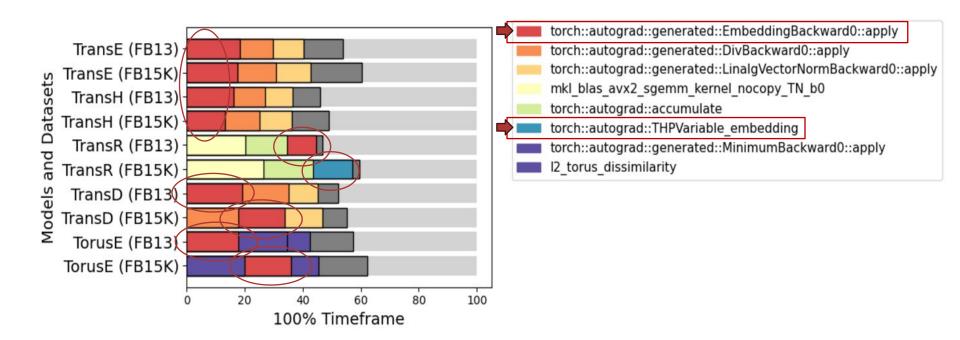
Efficient Training of Knowledge Graph Embeddings Using Sparse Matrix Operations

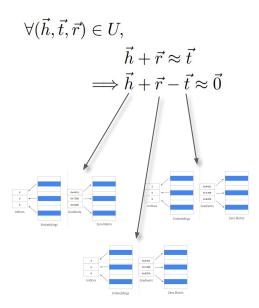
KG Embedding Training (TransE) Bordes et al., 2013

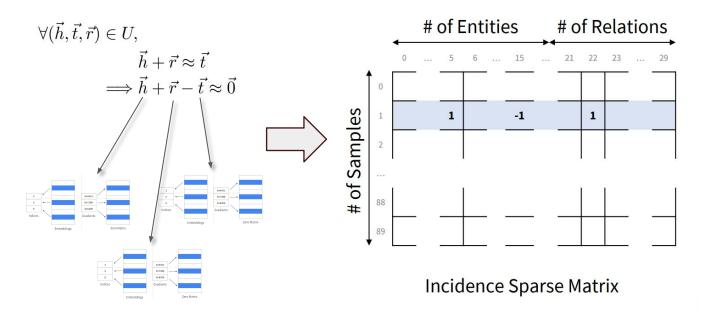

TransE score function:



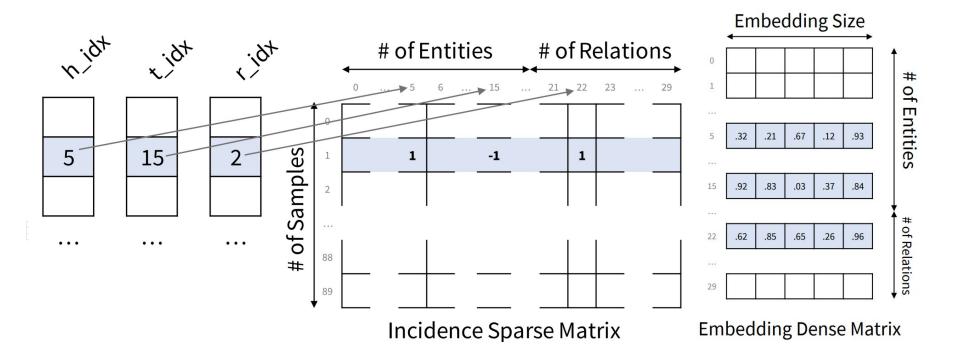
KG Embedding Training (TransE)

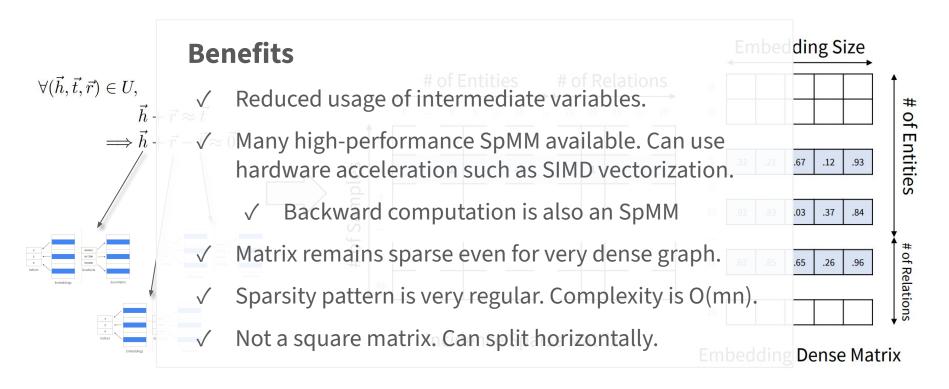

Bordes et al., 2013


TransE score function:

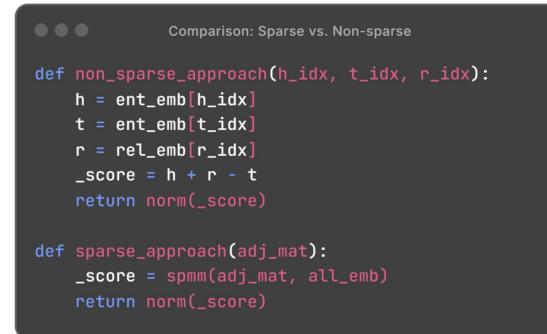



Training Bottleneck





 $\vec{h} + \vec{r} - \vec{t} \approx \vec{0}$



Comparison

Comparison: Sparse vs. Non-sparse

def non_sparse_approach(h_idx, t_idx, r_idx):
 h = ent_emb[h_idx]
 t = ent_emb[t_idx]
 r = rel_emb[r_idx]
 _score = h + r - t
 return norm(_score)

Comparison

Other Translational Models

Model	Scoring Function
TransE (Bordes et al., 2013)	$ \vec{h}+\vec{r}-\vec{t} $
TransH (Wang et al., 2014)	$ ec{h_{\perp}}+ec{d_r}-ec{t_{\perp}} $
TransR (Lin et al., 2015)	$ M_r\vec{h} + \vec{r} - M_r\vec{t} $
TorusE (Ebisu & Ichise, 2018)	$ ec{h}+ec{r}-ec{t} $
TransA (Xiao et al., 2015)	$ \vec{h}+\vec{r}-\vec{t} ^T W_r \vec{h}+\vec{r}-\vec{t} $
TransC (Lv et al., 2018)	$ ec{h}+ec{r}-ec{t} _2^2$
TransM (Fan et al., 2014)	$w_r \vec{h} + \vec{r} - \vec{t} $
DistMult (Yang et al., 2014)	$ ec{h}\odotec{r}\odotec{t} $
ComplEx (Trouillon et al., 2016)	$ ec{h}\odotec{r}\odotec{t}ec{t} $
RotatE (Sun et al., 2019)	$ ec{h}\odotec{r}-ec{t} $

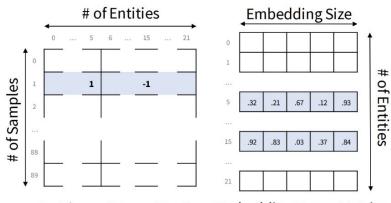
Other Translational Models

Model	Scoring Function
TransE (Bordes et al., 2013)	$ \vec{h}+\vec{r}-\vec{t} $
TransH (Wang et al., 2014)	$ \vec{h_{\perp}} + \vec{d_r} - \vec{t_{\perp}} $
TransR (Lin et al., 2015)	$ M_r \vec{h} + \vec{r} - M_r \vec{t} $
TorusE (Ebisu & Ichise, 2018)	$ \vec{h}+\vec{r}-\vec{t} $
TransA (Xiao et al., 2015)	$ \vec{h}+\vec{r}-\vec{t} ^T W_r \vec{h}+\vec{r}-\vec{t} $
TransC (Lv et al., 2018)	$ ec{h}+ec{r}-ec{t} _2^2$
TransM (Fan et al., 2014)	$w_r \vec{h} + \vec{r} - \vec{t} $
DistMult (Yang et al., 2014)	$ ec{h}\odotec{r}\odotec{t} $
ComplEx (Trouillon et al., 2016)	$ ec{h}\odotec{r}\odotec{ec{t}} $
RotatE (Sun et al., 2019)	$ ec{h}\odotec{r}-ec{t} $

Other Translational Models

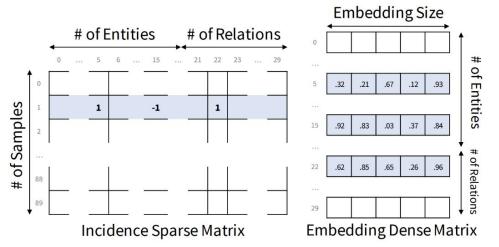
		-	using SpMM
Model	Scoring Function		# of Entities
TransE (Bordes et al., 2013)	$ \vec{h}+\vec{r}-\vec{t} $		0 5 6 15 21
TransH (Wang et al., 2014)	$ ec{h_{\perp}}+ec{d_r}-ec{t_{\perp}} $		
TransR (Lin et al., 2015)	$ M_r\vec{h} + \vec{r} - M_r\vec{t} $		O 1 1 -1
TorusE (Ebisu & Ichise, 2018)	$ \vec{h} + \vec{r} - \vec{t} $	_]	
TransA (Xiao et al., 2015)	$ \vec{h}+\vec{r}-\vec{t} ^T W_r \vec{h}+\vec{r}-\vec{t} $		Sar
TransC (Lv et al., 2018)	$ ec{h}+ec{r}-ec{t} _2^2$		1 1 2 -1
TransM (Fan et al., 2014)	$w_r ec{h} + ec{r} - ec{t} $	_	**• 89
DistMult (Yang et al., 2014)	$ ec{h}\odotec{r}\odotec{t} $		Incidence Sparse Matrix
ComplEx (Trouillon et al., 2016)	$ ec{h}\odotec{r}\odotec{ec{t}} $		
RotatE (Sun et al., 2019)	$ ec{h}\odotec{r}-ec{t} $		

Solution: Only compute (h-t)


Other Translational Models

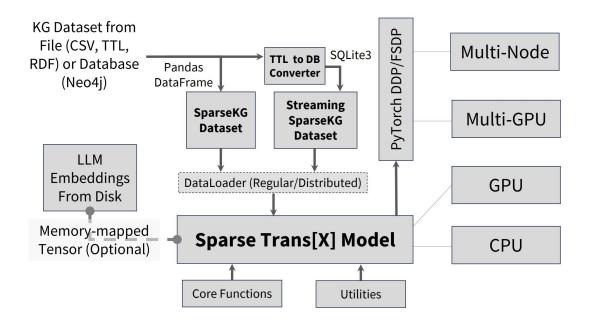
Model	Scoring Function
TransE (Bordes et al., 2013)	$ \vec{h}+\vec{r}-\vec{t} $
TransH (Wang et al., 2014)	$ ec{h_{\perp}}+ec{d_r}-ec{t_{\perp}} $
TransR (Lin et al., 2015)	$ M_r \vec{h} + \vec{r} - M_r \vec{t} $
TorusE (Ebisu & Ichise, 2018)	$ ec{h}+ec{r}-ec{t} $
TransA (Xiao et al., 2015)	$ ec{h}+ec{r}-ec{t} ^T W_r ec{h}+ec{r}-ec{t} $
TransC (Lv et al., 2018)	$ ec{h}+ec{r}-ec{t} _2^2$
TransM (Fan et al., 2014)	$w_r \vec{h} + \vec{r} - \vec{t} $
DistMult (Yang et al., 2014)	$ ec{h}\odotec{r}\odotec{t}] $
ComplEx (Trouillon et al., 2016)	$ ec{h}\odotec{r}\odotec{t} $
RotatE (Sun et al., 2019)	$ ec{h}\odotec{r}-ec{t} $

Other Translational Models


ModelScoring FunctionTransE (Bordes et al., 2013) $ \vec{h} + \vec{r} - \vec{t} $ TransH (Wang et al., 2014) $ \vec{h}_{\perp} + \vec{d}_r - t_{\perp} $ TransR (Lin et al., 2015) $ M_r\vec{h} + \vec{r} - M_r\vec{t} $ TorusE (Ebisu & Ichise, 2018) $ \vec{h} + \vec{r} - \vec{t} $ TransA (Xiao et al., 2015) $ \vec{h} + \vec{r} - \vec{t} $ TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} _2^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ ComplEx (Trouillon et al., 2019) $ \vec{h} \odot \vec{r} - \vec{t} $			_
TransH (Wang et al., 2014) $ \vec{h_{\perp}} + \vec{d_r} - \vec{t_{\perp}} $ TransR (Lin et al., 2015) $ M_r\vec{h} + \vec{r} - M_r\vec{t} $ TorusE (Ebisu & Ichise, 2018) $ \vec{h} + \vec{r} - \vec{t} $ TransA (Xiao et al., 2015) $ \vec{h} + \vec{r} - \vec{t} $ TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} _2^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ Solution: Use Semiring(Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	Model	Scoring Function	-
TransR (Lin et al., 2015) $ M_r \vec{h} + \vec{r} - M_r \vec{t} $ TorusE (Ebisu & Ichise, 2018) $ \vec{h} + \vec{r} - \vec{t} $ TransA (Xiao et al., 2015) $ \vec{h} + \vec{r} - \vec{t} TW_r \vec{h} + \vec{r} - \vec{t} $ TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} ^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ ComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	TransE (Bordes et al., 2013)	$ \vec{h}+\vec{r}-\vec{t} $	
TorusE (Ebisu & Ichise, 2018) $ \vec{h} + \vec{r} - \vec{t} $ TransA (Xiao et al., 2015) $ \vec{h} + \vec{r} - \vec{t} ^T W_r \vec{h} + \vec{r} - \vec{t} $ TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} _2^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ ComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	TransH (Wang et al., 2014)		
TransA (Xiao et al., 2015) $ \vec{h} + \vec{r} - \vec{t} ^T W_r \vec{h} + \vec{r} - \vec{t} $ TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} _2^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ ComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	TransR (Lin et al., 2015)	$ M_r\vec{h} + \vec{r} - M_r\vec{t} $	
TransC (Lv et al., 2018) $ \vec{h} + \vec{r} - \vec{t} _2^2$ TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ ComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	TorusE (Ebisu & Ichise, 2018)	11 ° 11	
TransM (Fan et al., 2014) $w_r \vec{h} + \vec{r} - \vec{t} $ Solution: Use SemiringDistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ Solution: Use SemiringComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $ Solution: Use Semiring	TransA (Xiao et al., 2015)		
DistMult (Yang et al., 2014) $ \vec{h} \odot \vec{r} \odot \vec{t} $ Solution: Use SemiringComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $ Solution: Use Semiring	TransC (Lv et al., 2018)		
ComplEx (Trouillon et al., 2016) $ \vec{h} \odot \vec{r} \odot \vec{t} $	TransM (Fan et al., 2014)	$w_r ec{h}+ec{r}-ec{t} $	_
1	DistMult (Yang et al., 2014)	$ ec{h}\odotec{r}\odotec{t} $	Solution: Use Semiring
RotatE (Sun et al., 2019) $ \vec{h} \odot \vec{r} - \vec{t} $	ComplEx (Trouillon et al., 2016)	$ ec{h}\odotec{r}\odotec{ec{t}} $	
	RotatE (Sun et al., 2019)	$ ec{h}\odotec{r}-ec{t} $	

(h-t) and (h+r-t) computation

Incidence Sparse Matrix Embedding Dense Matrix


(a) (h-t) Computation. All cells in the highlighted row are zero except h-idx and t-idx. For the highlighted row, h-idx = 5, t-idx = 15, entity-count = 22.

(b) (h + r - t) Computation. All cells in the highlighted row are zero except h-idx, t-idx, and r-idx + entity-count. For the highlighted row, h-idx = 5, t-idx = 15, entity-count = 20, r-idx = 2.

SparseTransX Framework

https://github.com/HipGraph/SpTransX

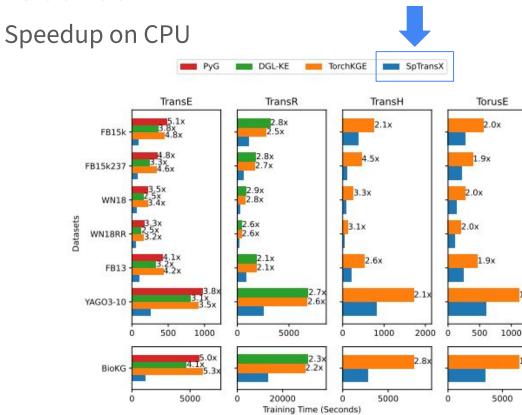
Experimental Setup

Models

Training configuration for CPU and GPU

MODEL	EMBEDDING	BATCH
TRANSE	1024	12×32768
TORUSE	1024	12×32768
TRANSR	128	2×32768
TRANSH	ENT=128, REL=128	32768

Training Loop (Single CPU/GPU)


- 1. 200 epochs
- 2. Learning Rate: 0.0004
- 3. Dissimilarity: L2
- 4. MarginRankingLoss
 - a. Margin: 0.5

Frameworks:

- 1. DGL-KE
- 2. PyTorch Geometric
- 3. TorchKGE
- 4. SparseTransX

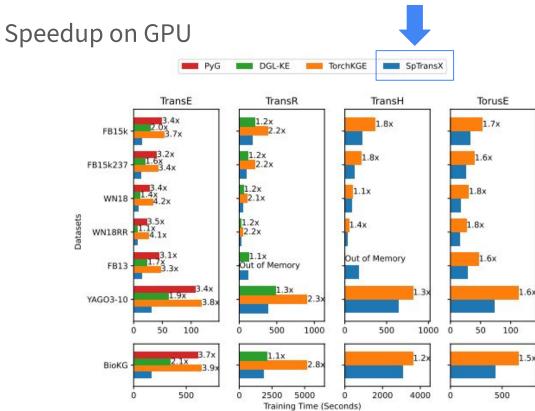
Measured:

- 1. Total Training Time
- 2. GPU Peak Memory
- 3. Cache Miss Rate
- 4. FLOPs Count
- 5. Hits@10 Accuracy*

[200 epochs]

Datasets

DATASET	ENTITY	RELATIONS	TRAINING TRIPLETS
FB15K	14951	1345	483142
FB15k237	14541	237	272115
WN18	40943	18	141442
WN18RR	40943	11	86835
FB13	67399	15342	316232
YAGO3-10	123182	37	1079040
BIOKG	93773	51	4762678


1.9x-5.3x Speedup

[NERSC Perlmutter system] AMD EPYC 7763 (Milan) CPU with 64 cores and 512GB DDR4 memory

Efficient Training of Knowledge Graph Embeddings Using Sparse Matrix Operations

1.9x

1.9x

[200 epochs]

Datasets

DATASET	ENTITY	RELATIONS	TRAINING TRIPLETS
FB15K	14951	1345	483142
FB15k237	14541	237	272115
WN18	40943	18	141442
WN18RR	40943	11	86835
FB13	67399	15342	316232
YAGO3-10	123182	37	1079040
BIOKG	93773	51	4762678

1.1x-4.2x Speedup

[NERSC Perlmutter system] 1 x NVIDIA A100-SXM4 GPU with 40 **GB VRAM**

Efficient Training of Knowledge Graph Embeddings Using Sparse Matrix Operations

1.6)

Average GPU Memory Usage

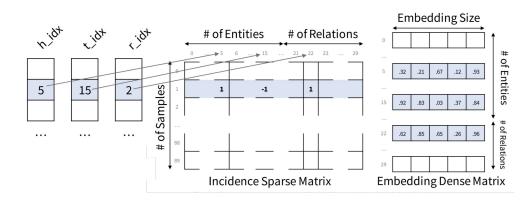
MODEL	SPTRANSX	TORCHKGE	DGL-KE	PyG
TRANSE	5.61	13.55	11.37	13.54
TRANSR	13.65	20.42	30.73	-
TRANSH	0.28	3.1	-	_
TORUSE	12.03	15.87	-	-

1.3x to 11.1x improvement

Accuracy

9 runs, 200-1000 epochs, WN18RR dataset

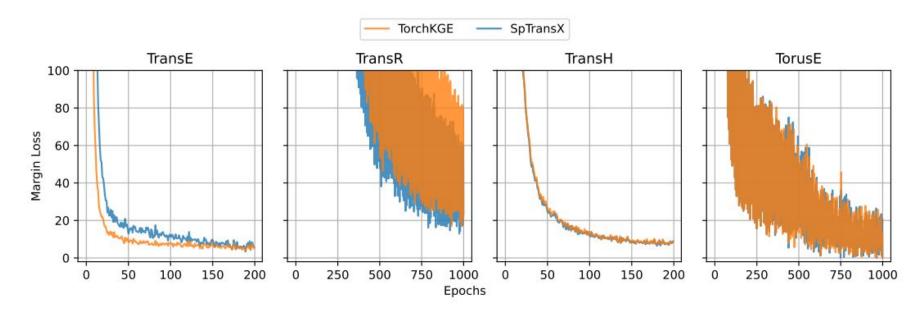
Average Hits@10


TorchKGE	SpTransX
0.79 ± 0.001700	0.79 ± 0.002667
0.29 ± 0.005735	0.33 ± 0.006154
0.76 ± 0.012285	0.79 ± 0.001832
0.73 ± 0.003258	0.73 ± 0.002780
	0.79 ± 0.001700 0.29 ± 0.005735 0.76 ± 0.012285

Summary

Formulated KG embedding training using SpMM

- 1. SpMM is well researched and has more efficient implementations
- 2. Generalized the formulation to many KG emb models
- 3. Compact model training → reduces GPU memory usage, speedup in CPU and GPU
- 4. The sparse training does not affect accuracy


Training loop modification: Preprocessed Dataloader, SpMM as part of model training

https://github.com/HipGraph/SpTransX

Thank You!

Loss Curve

Average FLOPs Count (factor of x10¹⁰)

MODEL	SpTransX	TORCHKGE	DGL-KE	PyG
TRANSE	220	483.87	293.06	483.82
TRANSR	567.37	1157.94	874.67	-
TRANSH	9.66	19.58	-	-
TORUSE	289.99	387.93	-	-

Average Cache Miss Rate (in %)

MODEL	S p TR ANS X	TORCHKGE	DGL-KE	PyG
TRANSE	26.54	29.37	29.99	29.04
TRANSR	17.02	19.20	29.54	-
TRANSH	10.43	9.75	-	-
TORUSE	21.53	22.94	-	-

Distributed Training

Distributed Data-Parallel (DDP) training time for the COVID19 dataset (60,820 entities, 62 relations, and 1,032,939 triplets)

Table: Scaling TransE model on COVID-19 dataset

Number of GPUs	500 epoch time (seconds)
4	706.38
8	586.03
16	340.00
32	246.02
64	179.95

Distributed Training

Training time of TransE model with Freebase dataset (250M triplets, 77M entities. 74K relations, batch size 393K) on 32 NVIDIA A100 GPUs. **FSDP enables model training with larger embedding when DDP fails.**

Table: Average Time of 15 Epochs (in seconds)

Embedding Size	DDP (Dis- tributed Data Parallel)	FSDP (Fully Sharded Data Parallel)	
16	65.07 ± 1.641	63.35 ± 1.258	
20	Out of Memory	96.44 ± 1.490	

Backpropagation of SpMM

Proof that $\frac{\partial C}{\partial X} = A^T$

To see why $\frac{\partial C}{\partial X} = A^T$ is used in the gradient calculation, we can consider the following small matrix multiplication without loss of generality.

$$A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$$
$$X = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$$
$$C = \begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix}$$

Where C = AX, thus-

 $c_{1} = f(x_{1}, x_{3})$ $c_{2} = f(x_{2}, x_{4})$ $c_{3} = f(x_{1}, x_{3})$ $c_{4} = f(x_{2}, x_{4})$

Backpropagation of SpMM

Therefore-

$$\begin{split} \frac{\partial \mathfrak{L}}{\partial x_1} &= \frac{\partial \mathfrak{L}}{\partial c_1} \times \frac{\partial c_1}{\partial x_1} + \frac{\partial \mathfrak{L}}{\partial c_2} \times \frac{\partial c_2}{\partial x_1} + \frac{\partial \mathfrak{L}}{\partial c_3} \times \frac{\partial c_3}{\partial x_1} + \frac{\partial \mathfrak{L}}{\partial c_4} \times \frac{\partial c_4}{\partial x_1} \\ &= \frac{\partial \mathfrak{L}}{\partial c_1} \times \frac{\partial \mathfrak{c}_1}{\partial x_1} + 0 + \frac{\partial \mathfrak{L}}{\partial c_3} \times \frac{\partial \mathfrak{c}_3}{\partial x_1} + 0 \\ &= a_1 \times \frac{\partial \mathfrak{L}}{\partial c_1} + a_3 \times \frac{\partial \mathfrak{L}}{\partial c_3} \end{split}$$

Similarly-

$$\frac{\partial \mathfrak{L}}{\partial x_2} = a_1 \times \frac{\partial \mathfrak{L}}{\partial c_2} + a_3 \times \frac{\partial \mathfrak{L}}{\partial c_4}$$
$$\frac{\partial \mathfrak{L}}{\partial x_3} = a_2 \times \frac{\partial \mathfrak{L}}{\partial c_1} + a_4 \times \frac{\partial \mathfrak{L}}{\partial c_3}$$
$$\frac{\partial \mathfrak{L}}{\partial x_4} = a_2 \times \frac{\partial \mathfrak{L}}{\partial c_2} + a_4 \times \frac{\partial \mathfrak{L}}{\partial c_4}$$

Backpropagation of SpMM

This can be expressed as a matrix equation in the following manner-

$$\frac{\partial \mathfrak{L}}{\partial X} = \frac{\partial C}{\partial X} \times \frac{\partial \mathfrak{L}}{\partial C}$$
$$\implies \begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial x_1} & \frac{\partial \mathfrak{L}}{\partial x_2} \\ \frac{\partial \mathfrak{L}}{\partial x_3} & \frac{\partial \mathfrak{L}}{\partial x_4} \end{bmatrix} = \frac{\partial C}{\partial X} \times \begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial c_1} & \frac{\partial \mathfrak{L}}{\partial c_2} \\ \frac{\partial \mathfrak{L}}{\partial c_3} & \frac{\partial \mathfrak{L}}{\partial c_4} \end{bmatrix}$$

By comparing the individual partial derivatives computed earlier, we can say-

$$\begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial x_1} & \frac{\partial \mathfrak{L}}{\partial x_2} \\ \frac{\partial \mathfrak{L}}{\partial x_3} & \frac{\partial \mathfrak{L}}{\partial x_4} \end{bmatrix} = \begin{bmatrix} a_1 & a_3 \\ a_2 & a_4 \end{bmatrix} \times \begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial c_1} & \frac{\partial \mathfrak{L}}{\partial c_2} \\ \frac{\partial \mathfrak{L}}{\partial c_3} & \frac{\partial \mathfrak{L}}{\partial c_4} \end{bmatrix}$$
$$\implies \begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial x_1} & \frac{\partial \mathfrak{L}}{\partial x_2} \\ \frac{\partial \mathfrak{L}}{\partial x_3} & \frac{\partial \mathfrak{L}}{\partial x_4} \end{bmatrix} = A^T \times \begin{bmatrix} \frac{\partial \mathfrak{L}}{\partial c_1} & \frac{\partial \mathfrak{L}}{\partial c_2} \\ \frac{\partial \mathfrak{L}}{\partial c_3} & \frac{\partial \mathfrak{L}}{\partial c_4} \end{bmatrix}$$
$$\implies \frac{\partial \mathfrak{L}}{\partial X} = A^T \times \frac{\partial \mathfrak{L}}{\partial C}$$
$$\therefore \frac{\partial C}{\partial X} = A^T \quad \Box$$