### 

# **QServe: W4A8KV4** Quantization and System **Co-design for Efficient LLM Serving**

Yujun Lin\*, Haotian Tang\*, Shang Yang\*, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, Song Han MIT, NVIDIA, MIT-IBM Watson AI Lab, UMass Amherst. Accepted by MLSys 2025.

\* indicates the equal contribution to this work.



## **Current status of LLM serving systems** GEMM and Attention together dominate the LLM inference latency.



**QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving** 



2

## QoQ: W4A8KV4 Quantization QoQ stands for *quattuor-octo-quattuor*, which represents 4-8-4 in Latin.

- QoQ quantization uses  $\bullet$ 
  - 8-bit activations to improve peak performance compared to FP16 activations

  - 4-bit weights to save memory bandwidth compared to INT8 weights  $\bullet$ • 4-bit KV Cache to save both storage and bandwidth compared to INT8 KV Cache.





# **Current status of LLM serving systems**

### W4A4 quantization leads to severe accuracy loss and even worse efficiency.

- Despite the existence of aggressive W4A4 quantization algorithms, they
  - Bring about significant accuracy loss;
  - Cannot run efficiently on current GPUs.

| Wikitext2    | Algorithm   | Llama-2 |      |  |  |
|--------------|-------------|---------|------|--|--|
| Perplexity ↓ | Aigontinin  | 7B      | 70B  |  |  |
| <b>W8A8</b>  | SmoothQuant | 5.54    | 3.36 |  |  |
| W4A4         | QuaRot      | 6.19    | 3.83 |  |  |
| W4A4 g128    | Atom        | 6.12    | 3.73 |  |  |
| W4A8KV4      | RTN         | 6.51    | 3.90 |  |  |
| W4A8KV4 g128 | RTN         | 5.99    | 3.70 |  |  |







# **QoQ: W4A8KV4 Quantization Algorithm for** LLM Cloud Serving

### **Progressive Group Quantization - W4A8** Per-channel INT8 quantization followed by per-group INT4 quantization







### **Progressive Group Quantization - W4A8 Protective range [-119, 119] avoids dequantization overflow.** We reconsider the dequantization process.



QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

$$\hat{w}_{s8} = \left\lceil \frac{w_{s8}}{s_{u8}} \right\rfloor \cdot s_{u8} \le w_{s4} + \frac{1}{2} s_{u8}$$

$$\frac{q_{\text{max}} - w_{\text{s8min}}}{q_{\text{u4max}} - q_{\text{u4min}}} \le \frac{q_{\text{s8max}} - q_{\text{s8min}}}{q_{\text{u4max}} - q_{\text{u4min}}} = \frac{127 - (-127)}{15 - 0} = \frac{127 - (-127)}{15 - 0}$$

$$\hat{w}_{s8} \le 127$$

we only need

$$w_{s8} + \frac{1}{2}s_{u8} \le 127$$

which is

$$w_{s8} \le 127 - \frac{1}{2}s_{u8} \le 127 - \frac{1}{2} \cdot 17 = 119.5$$



### **SmoothAttention - KV4** Migrate quantization difficulty from K cache to Q matrix



QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

(Original)

(SmoothAttention)

 $\mathbf{Z} = (\mathbf{Q}\mathbf{\Lambda}) \cdot (\mathbf{K}\mathbf{\Lambda}^{-1})^{T}, \quad \mathbf{\Lambda} = \operatorname{diag}(\lambda)$ 

Both Q and K are activations.



8

## **SmoothAttention - KV4** Migrate quantization difficulty from K cache to Q matrix



QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Both Q and K are activations.

$$\max\left(\left|\mathbf{K}_{i}\right|\right)^{\alpha}$$









# **QServe: Efficient LLM Serving System with W4A8KV4 Quantization**

# **QServe System Overview**







### **Quantized GEMM on GPUs Overhead in the GEMM main loop should be avoided.**



(b) TensorRT-LLM (INT4 Weights and FP16 Activations)

### **QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving**



(d) Ours (INT4 Weights and INT8 Activations)







## **Compute-Aware Weight Reorder** Reducing pointer arithmetics overhead through offline weight reordering



(a) The Idmatrix instruction ensures that each thread gets what it needs for compute in W8A8 GEMM

| H                 |     |     |     |     |        |               |                     |         | <u>S</u> |
|-------------------|-----|-----|-----|-----|--------|---------------|---------------------|---------|----------|
| —T0 →             | TO  | T1  | T2  | T3  | TO     | T1            | T2                  | Т3      | nne      |
| —T1 →             | T4  | T5  | T6  | T7  | T4     | T5            | T6                  | T7      | Cha      |
| <i>−…→</i>        | T8  | Т9  | T10 | T11 | Т8     | Т9            | T10                 | T11     | nt (     |
| $-T7 \rightarrow$ | T12 | T13 | T14 | T15 | T12    | T13           | T14                 | T15     | utp      |
| ► 4xINT4          |     |     |     |     | e Tile | s obtained by | y T0 from <b>Ic</b> | amatrix | 0        |







(b) However, the Idmatrix instruction fails for W4A8 GEMM due to storage-compute mismatch



|     | — 19 <b>→</b>  | T4          | 15         | 16       | (      | С<br>С  |
|-----|----------------|-------------|------------|----------|--------|---------|
|     | <i>−…→</i>     |             |            |          |        | U<br>tr |
|     | <b>−</b> T15 → | T28         | T29        | T30      | T31    | utpi    |
| ipu | te Tile        | es obtained | by T0 from | Idmatrix | abt ko | 0       |

| put Ch                                     | anne | els — |       |     |     | <u>S</u> |      |     |
|--------------------------------------------|------|-------|-------|-----|-----|----------|------|-----|
| Т3                                         | TO   |       | T1    | T2  | Т3  | nne      |      |     |
| T7                                         | T4   |       | T4    |     | T5  | T6       | T7   | Cha |
| T11                                        | Т8   |       | T8 T9 |     | T10 | T11      | ut ( |     |
| T15                                        | Т    | 12    | T13   | T14 | T15 | utp      |      |     |
| compute Tiles obtained by T0 from Idmatrix |      |       |       |     |     |          |      |     |

(c) Our solution: **compute-aware weight reorder** 



## **Efficient Dequantization with Reg-Level Parallelism Step 1. Dequantization from UINT4 to UINT8**



QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Reorder every 32 weights to **minimize logical instructions**: 3 instructions to dequantize 32 numbers.





## **Efficient Dequantization with Reg-Level Parallelism** Step 2. Dequantization from UINT8 to SINT8 (apply zero points and scales)



QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Subtraction after multiplication is more efficient than subtraction before multiplication.



16

## **Making Fused Attention Memory Bound** Theoretical computation intensity = 1 does not hold in fused implementation

### **Technique**

### TRTLLM-KV8

Naive KV4-g128

+Efficient INT4-to-FP16 dequantization

+Control flow simplification

+QK product in half2

+Prefetch scales/zeros

+Tuning tiling parameters

+SV product in half2

|                               | LLM-KV8  | Speedup over TRT | Latency<br>(ms) |
|-------------------------------|----------|------------------|-----------------|
|                               |          | 1.0x             | 0.42            |
|                               | <b>{</b> | <b>0.88x</b>     | 0.48            |
| quantization c<br>speed up de |          | 0.95x            | 0.44            |
| stage atter<br>automatic      |          | 1.08x            | 0.39            |
| QServe ba                     |          | 1.17x            | 0.36            |
| brings fused<br>back to the   |          | 1.31x            | 0.32            |
| realizes 1.5x                 |          | 1.40x            | 0.30            |
|                               |          | 1.50x            | 0.28            |







### **End-to-end Throughput Evaluation Results** Up to 2.4x-3.5x faster than TensorRT-LLM on A100, L40S



|      | 3.07 |  |  |  |  |  |  |
|------|------|--|--|--|--|--|--|
|      |      |  |  |  |  |  |  |
| 1.01 |      |  |  |  |  |  |  |



# **QServe outperforms the state-of-the-art W4A4**

| Wikitext2 Perplexity ↓ |             |                        | Llama-2                |                          | Llama                  |                          |                 | Mistral                 | Mixtral         | Yi             |
|------------------------|-------------|------------------------|------------------------|--------------------------|------------------------|--------------------------|-----------------|-------------------------|-----------------|----------------|
| Precision              | Algorithm   | 7B                     | 13B                    | 70B                      | 7B                     | 13B                      | 30B             | 7B                      | 8x7B            | 34B            |
| W8A8                   | SmoothQuant | 5.54                   | 4.95                   | 3.36                     | 5.73                   | 5.13                     | 4.23            | 5.29                    | 3.89            | 4.69           |
| W4A16<br>g128          | AWQ         | 5.60<br><b>(+0.06)</b> | 4.97<br>(+0.02)        | 3.41<br><b>(+0.05)</b>   | 5.78<br><b>(+0.05)</b> | 5.19<br><b>(+0.06)</b>   | 4.21<br>(-0.02) | 5.37<br>(+0.08)         | 4.02<br>(+0.13) | 4.67<br>(-0.02 |
| W4A4                   | QuaRot      | 6.19<br><b>(+0.65)</b> | 5.45<br>(+0.50)        | 3.83<br>(+ <b>0.47</b> ) | 6.34<br>(+0.61)        | 5.58<br>(+ <b>0.45</b> ) | 4.64<br>(+0.41) | 5.77<br>(+ <b>0.48)</b> | NaN             | NaN            |
| W4A4<br>g128           | Atom        | 6.12<br><b>(+0.58)</b> | 5.31<br><b>(+0.36)</b> | 3.73<br>(+0.37)          | 6.25<br>(+0.52)        | 5.52<br>(+0.39)          | 4.61<br>(+0.38) | 5.76<br>(+ <b>0.47)</b> | 4.48<br>(+0.59) | 4.97<br>(+0.28 |
| W4A8KV4                | QServe      | 5.75<br>(+0.18)        | 5.12<br>(+0.17)        | 3.52<br>(+0.16)          | 5.93<br>(+0.20)        | 5.28<br>(+0.15)          | 4.34<br>(+0.11) | 5.45<br>(+0.16)         | 4.18<br>(+0.29) | 4.74<br>(+0.05 |
| W4A8KV4<br>g128        | QServe      | 5.70<br>(+0.13)        | 5.08<br>(+0.13)        | 3.47<br>(+0.11)          | 5.89<br>(+0.16)        | 5.25<br>(+0.12)          | 4.28<br>(+0.05) | 5.42<br>(+0.13)         | 4.14<br>(+0.25) | 4.76<br>(+0.07 |







## **Next Step: Long-context Serving with Sparse Attention** LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention

- Unified static and dynamic sparse attention
- by 1.3-2.1x over vLLM



LServe: Efficient Long-sequence LLM Serving with Unified Sparse Attention [Yang et al, MLSys 2025]





### **QoQ Algorithm**

**QServe System** 

- Compute-aware Weight Reordering
- Efficient Dequantization (Mul  $\rightarrow$  Sub)
- Make Fused Attention Memory-bound

Q

()

TRT-LLM

on A100





