Skip to yearly menu bar Skip to main content


Poster

COMET: Neural Cost Model Explanation Framework

Isha Chaudhary · Alex Renda · Charith Mendis · Gagandeep Singh

Poster Position Number 17

Abstract:

Cost models predict the cost of executing given assembly code basic blocks on a specific microarchitecture. Recently, neural cost models have been shown to be fairly accurate and easy to construct. They can replace heavily engineered analytical cost models used in mainstream compiler workflows. However, their black-box nature discourages their adoption. In this work, we develop the first framework, COMET, for generating faithful, generalizable, and intuitive explanations for neural cost models. We generate and compare COMET’s explanations for the popular neural cost model, Ithemal against those for an accurate CPU simulation-based cost model, uiCA. Our empirical findings show an inverse correlation between the prediction errors of Ithemal and uiCA and the granularity of basic block features in COMET’s explanations for them, thus indicating potential reasons for the higher error of Ithemal with respect to uiCA.

Chat is not available.