Skip to yearly menu bar Skip to main content


Poster

QServe:W4A8KV4 Quantization and System Co-design for Efficient LLM Serving

Yujun Lin · Haotian Tang · Shang Yang · Zhekai Zhang · Guangxuan Xiao · Chuang Gan · Song Han


Abstract:

Quantization can accelerate large language model (LLM) inference. Going beyond INT8 quantization, the research community is actively exploring even lower precision, such as INT4. Nonetheless, state-of-the-art INT4 quantization techniques only accelerate low-batch, edge LLM inference, failing to deliver performance gains in large-batch, cloud-based LLM serving. We uncover a critical issue: existing INT4 quantization methods suffer from significant runtime overhead (20-90%) when dequantizing either weights or partial sums on GPUs. To address this challenge, we introduce QoQ, a W4A8KV4 quantization algorithm with 4-bit weight, 8-bit activation, and 4-bit KV cache. QoQ stands for quattuor-oct ¯o-quattuor, which represents 4-8-4 in Latin. QoQ is implemented by the QServe inference library that achieves measured speedup. The key insight driving QServe is that the efficiency of LLM serving on GPUs is critically influenced by operations on low-throughput CUDA cores. Building upon this insight, in QoQ algorithm, we introduce progressive quantization that can allow low dequantization overhead in W4A8 GEMM. Additionally, we develop SmoothAttention to effectively mitigate the accuracy degradation incurred by 4-bit KV quantization. In the QServe system, we perform compute-aware weight reordering and take advantage of register-level parallelism to reduce dequantization latency. We also transfer theoretical memory saving brought by KV4 attention into measured speedup using QServe. As a result, QServe improves the maximum achievable serving throughput of Llama-3-8B by 1.2× on A100, 1.4× on L40S; and Qwen1.5-72B by 2.4× on A100, 3.5× on L40S, compared to TensorRT-LLM. Remarkably, QServe on L40S GPU can achieve even higher throughput than TensorRT-LLM on A100. Code will be released.

Chat is not available.