Skip to yearly menu bar Skip to main content


Keynote
in
Workshop: Personalized Recommendation Systems and Algorithms

From Recommender Systems to Natural Language Processing and Back Again

Julian McAuley


Abstract:

In this talk we'll explore three lines of work at the intersection of recommender systems and natural language processing. We'll start by introducing "traditional" recommender systems that leverage text as side-information, either to improve predictive performance or to aid interpretability. Second we'll discuss recent methodological advances in recommendation that borrow methods from NLP as a means of modeling interaction sequences (e.g. models based on word2vec, RNNs, Transformer, etc.). Finally we'll discuss personalized language generation, which borrows ideas from recommender systems to capture patterns of variation in text (subjectivity, context, etc.) and is driving emerging applications such as personalized dialog systems and conversational recommendation.