On-device federated learning with Flower (Akhil Mathur, Nokia Bell Labs)
2021 Contributed 5
in
Workshop: 2nd On-Device Intelligence Workshop
in
Workshop: 2nd On-Device Intelligence Workshop
Abstract
Federated Learning (FL) allows edge devices to collaboratively learn a shared prediction model while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store data in the cloud. Despite the algorithmic advancements in FL, the support for on-device training of FL algorithms on edge devices remains poor. We present one of the first explorations of on-device FL on various smartphones and embedded devices using the Flower framework. We also evaluate the system costs of on-device FL and discuss how this quantification could be used to design more efficient FL algorithms.
Video
Chat is not available.
Successful Page Load