Poster

A Learned Performance Model for Tensor Processing Units

Sam Kaufman · Phitchaya Phothilimthana · Yanqi Zhou · Charith Mendis · Sudip Roy · Amit Sabne · Mike Burrows

Abstract:

Accurate hardware performance models are critical to efficient code generation. They can be used by compilers to make heuristic decisions, by superoptimizers as a minimization objective, or by autotuners to find an optimal configuration for a specific program. However, they are difficult to develop because contemporary processors are complex, and the recent proliferation of deep learning accelerators has increased the development burden. We demonstrate a method of learning performance models from a corpus of tensor computation graph programs for Tensor Processing Unit (TPU) instances. We show that our learned model outperforms a heavily-optimized analytical performance model on two tasks—tile-size selection and operator fusion—and that it helps an autotuner discover faster programs in a setting where access to TPUs is limited or expensive.

Chat is not available.