Skip to yearly menu bar Skip to main content


Timezone: America/Los_Angeles
Filter Events
Registration Desk
8:00 AM - 4:00 PM
Poster
6 Events in this session
Tianle Zhong · Jiechen Zhao · Qiang Su · Geoffrey Fox
Jinghan Yao · Sam Jacobs · Masahiro Tanaka · Olatunji Ruwase · Hari Subramoni · Dhabaleswar Panda
Yujin Wang · Shunan Dong · Zongle Huang · Yichen You · Liu He · Huazhong Yang · Yongpan Liu · Hongyang Jia
Hanqing Zhu · Zhenyu Zhang · Wenyan Cong · Xi Liu · Sem Park · Vikas Chandra · Bo Long · David Pan · Atlas Wang · Jinwon Lee
Mingyu Liang · Hiwot Kassa · Wenyin Fu · Brian Coutinho · Louis Feng · Christina Delimitrou
Zhiyu Mei · WEI FU · Kaiwei Li · Guangju Wang · Huanchen Zhang · Yi Wu
Go to Event Page
Invited Talk
10:30 AM - 11:30 AM

The scaling of large language models has led to impressive gains in language understanding, but at a cost of insatiable memory and bandwidth requirements. We take a principled approach of designing optimization and quantization algorithms that can reduce memory requirements without sacrificing accuracy. This includes gradient compression methods (GaLore, SignSGD) and logarithmic number system for representation. We also design fine-grained memory reduction schemes such as KV cache compression, chunking and offloading to overcome memory bottlenecks in language models, especially in the reasoning mode where current memory requirements are massive. Such principles are broadly applicable and especially relevant to physical AI where the memory and bandwidth requirements are even greater than frontier LLMs.

... more
Speaker Bio
Animashree Anandkumar
Professor Anandkumar's research interests are in the areas of large-scale machine learning, non-convex optimization and high-dimensional statistics. In particular, she has been spearheading the development and analysis of tensor algorithms for machine learning. Tensor decomposition methods are embarrassingly parallel and scalable to enormous datasets. They are guaranteed to converge to the global optimum and yield consistent estimates for many probabilistic models such as topic models, community models, and hidden Markov models. More generally, Professor Anandkumar has been investigating efficient techniques to speed up non-convex optimization such as escaping saddle points efficiently.
... more
Poster
5 Events in this session
Kasper Overgaard Mortensen · Konstantinos Skitsas · Emil Morre Christensen · Mohammad Sadegh Talebi · Andreas Pavlogiannis · Davide Mottin · Panagiotis Karras
Lu Wang · Mayukh Das · Fangkai Yang · Bo Qiao · Hang Dong · Si Qin · Victor Ruehle · Chetan Bansal · Eli Cortez · Íñigo Goiri · S R · Qingwei Lin · Dongmei Zhang
Chenxi Yang · Yan Li · Martin Maas · Mustafa Uysal · Ubaid Hafeez · Arif Merchant · Richard McDougall
Shu Liu · Asim Biswal · Audrey Cheng · Amog Kamsetty · Luis Gaspar Schroeder · Liana Patel · Shiyi Cao · Xiangxi Mo · Ion Stoica · Joseph Gonzalez · Matei Zaharia
Go to Event Page
Poster
5 Events in this session
Shang Yang · Junxian Guo · Haotian Tang · Qinghao Hu · Guangxuan Xiao · Jiaming Tang · Yujun Lin · Zhijian Liu · Yao Lu · Song Han
Francesco Daghero · Daniele Jahier Pagliari · Francesco Conti · Luca Benini · Massimo Poncino · Alessio Burrello
Qianchao Zhu · Jiangfei Duan · Chang Chen · Siran Liu · Xiuhong Li · Guanyu Feng · Xin Lv · Xiao Chuanfu · Dahua Lin · Chao Yang
Marco Federici · Davide Belli · Mart van Baalen · Amir Jalalirad · Andrii Skliar · Bence Major · Markus Nagel · Paul Whatmough
Go to Event Page
Poster
5 Events in this session
Qidong Su · Wei Zhao · Xin Li · Muralidhar Andoorveedu · Chenhao Jiang · Zhanda Zhu · Kevin Song · Christina Giannoula · Gennady Pekhimenko
Jiacheng Yang · Jun Wu · Zhen Zhang · Xinwei Fu · Zhiying Xu · Zhen Jia · Yida Wang · Gennady Pekhimenko
Hao Kang · Srikant Bharadwaj · James Hensman · Tushar Krishna · Victor Ruehle · Saravan Rajmohan
Seonjin Na · Geonhwa Jeong · Byung Hoon Ahn · Aaron Jezghani · Jeffrey Young · Christopher Hughes · Tushar Krishna · Hyesoon Kim
Ke Hong · Xiuhong Li · Lufang Chen · Qiuli Mao · Guohao Dai · Xuefei Ning · Shengen Yan · Yun Liang · Yu Wang
Go to Event Page
Session
6:00 PM - 8:00 PM