Workshop
Practical Adoption Challenges of ML for Systems in Industry (PACMI)
Deniz Altınbüken · Lyric Doshi · Milad Hashemi · Martin Maas
Mission Ballroom MR1
Thu 1 Sep, 8 a.m. PDT
Using ML for improving computer systems has seen a significant amount of work both in academia and industry. However, deployed uses of such techniques remain rare. While many published works in this space focus on solving the underlying learning problems, we observed from an industry vantage point that some of the biggest challenges of deploying ML for Systems in practice come from non-ML systems aspects, such as feature stability, reliability, availability, ML integration into rollout processes, verification, safety guarantees, feedback loops introduced by learning, debuggability, and explainability.
The goal of this workshop is to raise awareness of these problems and bring together practitioners (both on the production systems and ML side) and academic researchers, to work towards a methodology of capturing these problems in academic research. We believe that starting this conversation between the academic and industrial research communities will facilitate the adoption of ML for Systems research in production systems, and will provide the academic community with access to new research problems that exist in real-world deployments but have seen less attention in the academic community.
The workshop will uniquely facilitate this conversation by providing a venue for lightweight sharing of anecdotes and experiences from real-world deployments, as well as giving researchers a venue for sharing early-stage work on addressing these problems.
Schedule
Thu 9:00 a.m. - 9:15 a.m.
|
Opening Remarks
(
Opening Remarks
)
>
|
🔗 |
Thu 9:15 a.m. - 10:00 a.m.
|
ML-driven Cloud Resource Management
(
Invited Talk
)
>
|
Neeraja Yadwadkar 🔗 |
Thu 10:00 a.m. - 10:30 a.m.
|
Break with Refreshments
|
🔗 |
Thu 10:30 a.m. - 11:15 a.m.
|
The Past and Future of Machine Programming in Academia and Industry (A Retrospective and Forecast)
(
Invited Talk
)
>
|
Justin Gottschlich 🔗 |
Thu 11:15 a.m. - 12:00 p.m.
|
Raptor: Industrial Reinforcement Learning At Scale
(
Invited Talk
)
>
|
Jonathan Ben-tzur 🔗 |
Thu 1:00 p.m. - 1:30 p.m.
|
Limitations of Data-driven based Approaches for Assuring Performance of Enterprise IT Systems
(
Submission Talks
)
>
|
Rekha Singhal 🔗 |
Thu 1:00 p.m. - 1:30 p.m.
|
Real-World Challenges of ML-based Database Auto-tuning
(
Submission Talks
)
>
|
Shohei Matsuura · Takashi Miyazaki 🔗 |
Thu 1:00 p.m. - 1:30 p.m.
|
Understanding Model Drift in a Large Cellular Network
(
Submission Talks
)
>
|
Shinan Liu 🔗 |
Thu 1:30 p.m. - 2:15 p.m.
|
Panel Discussion
(
Panel Discussion
)
>
|
Benoit Steiner · Neeraja Yadwadkar · Siddhartha Sen · Jonathan Raiman 🔗 |
Thu 2:15 p.m. - 3:00 p.m.
|
CacheSack: Lessons from deploying an admission optimizer for Google datacenter flash caches
(
Invited Talk
)
>
|
Arif Merchant 🔗 |
Thu 3:00 p.m. - 3:30 p.m.
|
PM Break with Refreshments
|
🔗 |
Thu 3:30 p.m. - 4:15 p.m.
|
Counterfactual Reasoning and Safeguards for ML Systems
(
Invited Talk
)
>
|
Siddhartha Sen 🔗 |
Thu 4:15 p.m. - 5:00 p.m.
|
Breakout Session
(
Breakout Session
)
>
|
🔗 |